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Preface _____________________________________

In 1978, a national workshop on fire effects in Denver, Colorado, provided the impetus
for the “Effects of Wildland Fire on Ecosystems” series. Recognizing that knowledge of
fire was needed for land management planning, state-of-the-knowledge reviews were
produced that became known as the “Rainbow Series.” The series consisted of six
publications, each with a different colored cover, describing the effects of fire on soil,
water, air, flora, fauna, and fuels.

The Rainbow Series proved popular in providing fire effects information for professionals,
students, and others. Printed supplies eventually ran out, but knowledge of fire effects
continued to grow. To meet the continuing demand for summaries of fire effects knowledge,
the interagency National Wildfire Coordinating Group asked Forest Service research leaders
to update and revise the series. To fulfill this request, a meeting for organizing the revision was
held January 4-6, 1993, in Scottsdale, Arizona. The series name was then changed to “The
Rainbow Series.” The five-volume series covers air, soil and water, fauna, flora and fuels, and
cultural resources.

The Rainbow Series emphasizes principles and processes rather than serving as a
summary of all that is known. The five volumes, taken together, provide a wealth of information
and examples to advance understanding of basic concepts regarding fire effects in the United
States and Canada. As conceptual background, they provide technical support to fire and
resource managers for carrying out interdisciplinary planning, which is essential to managing
wildlands in an ecosystem context. Planners and managers will find the series helpful in many
aspects of ecosystem-based management, but they will also need to seek out and synthesize
more detailed information to resolve specific management questions.

–– The Authors
December 2002
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Summary
Wildland fire is an integral part of ecosystem manage-

ment and is essential in maintaining functional ecosys-
tems, but air pollutants emitted from those fires can be
harmful to human health and welfare. Because of the
public and governmental concerns about the possible
risk of wildland fire smoke to public health and safety, as
well as nuisance, visibility, ozone generation, and re-
gional haze impacts, increasingly effective smoke man-
agement programs and air quality policies are being
implemented with support from research and land man-
agement agency programs.

This state-of-knowledge review of what is known about
the effects of fire on air quality has been prepared to
assist those in the fire and air quality management
communities for future discussion of management, policy,
and science options for managing fire and air quality. The
introduction sets up a framework in which to discuss the
interaction between pollutants emitted from fire, and air
quality at the national, State, and local levels applied to
air resource management, fire management, and geo-
graphical scale components. It also provides an over-
view of science reviews conducted since 1979 and
discusses recent changes in fire policy, strategies, and
funding. The Clean Air Act and its amendments are
discussed in chapter 2, in the context of how and why fire
impacts each issue, what information is needed, and who
needs it to fulfill legal requirements under the act. Na-
tional ambient air quality standards, regional haze and
visibility, hazardous air pollutants, and best available
control methods are some of the topics covered. Chapter
3 covers the magnitude of the impacts of prescribed and
wildland fire on air quality, and contains an overview of
smoke management plans intended to manage those
impacts.

Chapters 4 through 7 present scientific and technical
discussions. Chapter 4 discusses the characterization
and production rate of emissions from fire in terms of
fuels, fire behavior, stages of combustion, fuel consump-
tion, and emission factors of various pollutants. The basic
elements and modeling of transport and dispersion are
covered in chapter 5, including, plume, puff, particle, and
grid models. Chapter 6 considers plume and atmo-
spheric chemistry, the chemical reactions that occur in
plumes, with a focus on ozone formation and particle
formation. Use of emission inventories, air quality moni-
toring, and source apportionment methods, and mecha-
nistic models to estimate the impacts of fire on air quality
are covered in chapter 7. Chapter 8 reviews the health,
welfare, economic, and safety consequences of these
impacts. The final chapter recommends priorities for
future research to better understand and quantify fire and
its effect on air quality.

iv

Metric Equivalents
When you know: Divide by: To find:

Feet (ft) 3.28 Meters

Pounds (lb) 2.21 Kilograms

Acres 2.47 Hectares

Pounds per acre 0.89 Kilograms per
    hectare

Fahrenheit (°F) 1.8 and subtract 32 Celsius
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Chapter 1:
Introduction

A state-of-knowledge review, Effects of Fire on Air,
was written in 1979 to inform environmental agen-
cies, fire managers, and land management planners,
and to guide research strategies in the intervening
years (Sandberg and others 1979). That review is still
technically sound for the most part, but substantial
new knowledge is now available. In this volume, we
update that review of knowledge important for man-
aging the effects of fire on air and for adjusting the
course of new research. In addition, we expand the
scope of our review to place the information in the
context of new policies regarding fire management
and air quality management

Acquisition of scientific knowledge regarding air
pollution from fires is motivated by active policy devel-
opment both to restore the role of fire in ecosystems
and to improve air quality. Land managers require
quantitative analysis and goal-seeking solutions to
minimize the negative consequences of fire manage-
ment. Managing fire and air quality to the standards
set by Congress requires an increasingly detailed base
of scientific knowledge and information systems.

The Federal Wildland Fire Policy (U.S. Department of
the Interior and U.S. Department of Agriculture 1995)
and the Clean Air Act as Amended 1990 (PL 101-549)
resulted in the need to significantly raise the level of
knowledge about fire’s effects on air in order to meet
regulatory and management requirements. For example,

new information is needed to assess, monitor, predict,
and manage:

• Emissions and air quality impacts from wild-
fires

• Acute health effects of human exposure to
smoke

• Natural and anthropogenic sources of visibil-
ity reduction

• Cumulative air quality impacts from expanded
fuel management programs

• Tradeoffs between air quality impacts from
wildland fire and prescribed fire

Likewise, management of fire and air quality is also
undergoing substantial policy development that has
led to the need for new and different information to
satisfy regulatory and management requirements. As
both legal and management issues mature, there is
less a sense that environmental regulation is a limita-
tion on fire management, and more of a sense that
ecosystem management goals, fire safety, and air
quality are goals to be met collectively. For example,
new air quality rules recognize the importance of the
role of fire in sustaining ecosystems and the inherent
tradeoffs between prescribed fire and wildland fire
occurrence. At the same time, land management plans
and real-time fire management decisions increasingly
factor in the expected consequences to air quality.
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Since 1995, researchers and land managers have
concentrated a great deal of energy to extend what is
known about fire and its effect on air quality; to expand
information systems that make knowledge readily
available to policy, management, and public clients; to
merge what is known about sustainable ecosystems
and disturbance ecology with what is known about the
chemistry, physics, biology, and social impacts of air
pollution; and to redefine the research agenda.

Objective ______________________
This review summarizes the current state of knowl-

edge of the effects of fire on air, and defines research
questions of high priority for the management of
smoke from fires. We also intend this as a reference
document for future discussion of management, policy,
and science options for managing fires and air quality.
This review is limited to readily available published
and unpublished knowledge and to original contribu-
tions by the authors. No new analysis of data or policy,
nor assessment of impacts and options, is included
herein.

Related Publications _____________
This document does not stand alone. There are

several excellent sources for information on the effects
of fire on air. We advise the reader to include at least
the following publications, each of which will be ab-
stracted in this document, in your reference library:

• Smoke Management Guide for Prescribed and
Wildland Fire: 2001 Edition (Hardy and oth-
ers 2001)

• National Strategic Plan: Modeling and Data
Systems for Wildland Fire and Air Quality
(Sandberg and others 1999)

• Introduction to Visibility (Malm 2000)
• Fire Effects on Air (Sandberg and others 1979)
• Southern Forestry Smoke Management Guide-

book (Southern Forest Fire Laboratory Per-
sonnel 1976)

• Development of Emissions Inventory Methods
for Wildland Fire (Battye and Battye 2002)

Why, then, is another state-of-knowledge review
necessary on the subject of fire effects on air? First,
because policy and regulatory development in air
quality management and in fire management is ad-
vancing rapidly, and there is a continuing need to
reassess current knowledge about what is required to
meet new expectations. Second, this document ad-
dresses the advancement of science at a much higher
level than the above-mentioned references. Third,
because the Joint Fire Science Program has sponsored
a series of reviews, nicknamed the Rainbow Series (see

“Preface”), to compile a broad reference of fire effects
to serve practitioners and policymakers charged with
using and managing fire, and this is the third volume
in that series. Finally, we hope you will find this
volume a useful attempt to abstract and fill in the gaps
left by the previous publications.

Scope _________________________
This review includes all health and welfare effects of

air pollution from fires, but does not include the effects
of air resource management on ecosystem health or
any other value. Unless otherwise specifically stated,
the term “fires” in this manuscript includes all pre-
scribed and wildland fires on wildlands. Prescribed
fires are ignited intentionally to achieve ecosystem
management or fire protection objectives, whereas
wildland fires result from unplanned ignitions on
wildlands. Wildlands include all the nonagricultural
and nonresidential rural lands of the United States,
including the wildland-urban interface, regardless of
ownership, sovereignty, or management objective.
Management response to wildland fires differs greatly
according to economic efficiency, the values at risk
(including air quality), and the expected ecological
consequences. Wildfires are at one end of the spectrum
of wildland fires in that they are unwanted and un-
planned, and are managed to minimize cost plus loss.
At the other end of the spectrum are wildland fires
that benefit ecosystem values, and are managed to
maximize their benefit. Ideally, each wildland fire is
evaluated with respect to expected costs, losses, risks,
and benefits in order to provide an appropriate and
preplanned response. Because fires are a significant
emitter of air pollutants, many other fire management
activities such as fire prevention or fuel treatment
may have an indirect effect on air quality.

Framework _____________________
The issues, responsibilities, and tools that address

fire and air quality are varied and complex, sometimes
resulting in confusion about the physical scale and
temporal stage of three characteristics: the applica-
tion to fire management, the application to air re-
source management, and the physical process of air
pollution. National Strategic Plan: Modeling and Data
Systems for Wildland Fire and Air Quality (Sandberg
and others 1999) provides a conceptual framework for
visualizing fire’s effects on air by representing the
scope of the problem as a three dimensional array of
air resource management, fire management, and scale
components (fig. 1-1). The air resource component is
ordered in time from emissions source strength, to
ambient air quality, and to effects. The fire manage-
ment component includes planning, operations, and
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monitoring. The scale component includes the event,
landscape, state or tribal, and regional scales.

We have organized this volume around the air re-
source component and expanded it to include a regu-
latory perspective (fig. 1-2). Fire in the context of the
regulatory environment is the subject of chapters 2
and 3. Biomass consumption and emissions are the

subject of chapter 4; transport and dispersion of pollut-
ants in the atmosphere the subjects of chapters 5 and
6; air quality impacts the subject of chapter 7; and the
effect on human values from exposure to air pollutants
the subject of chapter 8. We conclude with a review of
recommendations for future research in chapter 9.

Prior Work _____________________
Since the publication of Effects of Fire on Air

(Sandberg and others 1979), significant changes have
come to pass in both the technical and policy issues
that surround the fire and air quality dilemma. The
conferences, stakeholder group discussions, and tech-
nical publications discussed here have helped to shape
the current fire management programs and will influ-
ence future programs.

Smoke Management Guide For Prescribed
and Wildland Fire: 2001 Edition

Smoke Management Guide for Prescribed and Wild-
land Fire: 2001 Edition (Hardy and others 2001) has
been developed by the Fire Use Working Team of the
National Wildfire Coordinating Group (NWCG) and
involves most of the same authors as this current
publication. The guide provides fire management
and smoke management practitioners with a funda-
mental understanding of fire emissions processes
and impacts, regulatory objectives, and tools for the
management of smoke from fires. It is a comprehen-

Figure 1-1—Three primary components of the issues, respon-
sibilities, and tools related to wildland fire and air quality: air
resource management, fire management, and scale (Sandberg
and others 1999).

Figure 1-2—The relations of air regulations and physical processes to the three categories within the air
resource component. OSHA/NIOSH = Occupational Safety and Health Administration/National Institute for
Occupational Safety and Health (Sandberg and others 1999).
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sive treatment of the state of knowledge regarding
fire and air quality and provides guidance to practi-
tioners. We will not attempt to duplicate its level of
detail in this volume. Rather, we add some technical
background and analysis of research needs relative
to new requirements for management.

First published in 1985, the guide is intended to
provide national guidance for the planning and man-
aging of smoke from prescribed fires to achieve air
quality requirements through better smoke manage-
ment practices (NWCG 1985). This guide has been
widely distributed within the fire community and air
quality regulatory agencies, and to private and Tribal
land managers, providing a single comprehensive
source of information on fire and air quality issues.

Much has changed since 1985 in prescribed burning
practices, smoke management programs, and air qual-
ity regulatory requirements. These changes are re-
flected in the 2001 edition of the guide, which includes
expanded sections on fire and emissions processes,
smoke impacts on health, welfare, safety, and nui-
sance; regulations for smoke management; and the
fundamentals of responsible smoke management
(Hardy and others 2001). These fundamentals include
fire planning, use of smoke management meteorology,
techniques to reduce emissions, smoke dispersion pre-
diction systems, air quality monitoring methods, and
program assessment.

The most significant change in the guide is the
expanded and updated section on techniques to reduce
emissions and impacts. While the 1985 guide focused
primarily on minimizing smoke impacts by meteoro-
logical scheduling and dispersion, the 2001 guide
provides detailed information on emissions reduction
techniques, used in different regions of the country,
that have been useful, practicable, and effective in the
field. This emphasis on actual reduction of emissions
rather than dispersion was provided in response to air
quality regulations that now target regional emissions
reductions.

Readers will also find that the 2001 guide has a great
deal more information on the latest developments in
national air quality regulations that affect fire pro-
grams including the regional haze and visibility pro-
tection programs, Clean Air Act’s conformity require-
ments, EPA’s Interim Air Quality Policy on Wildland
and Prescribed Fires (EPA 1998), and NEPA planning
guidance. The guide was drafted by 16 authors and
five editor/compilers working under the sponsorship
of the NWCG Fire Use Working Team with support
from the EPA.

Wildland Fire and Air Quality: National
Strategic Plan

Another recent publication also provides a system-
atic review of the state of knowledge and information

systems. This strategic plan was also sponsored by
the NWCG and the Environmental Protection Agency
(EPA).

In 1997, the NWCG Fire Use Working Team sanc-
tioned a small group of fire research scientists and air
quality managers to develop a National Strategic
Plan: Modeling and Data Systems for Wildland Fire
and Air Quality (Sandberg and others 1999) to foster
development and implementation of models and data
systems that could be used to manage air quality
impacts of fires. The resulting report provides a con-
ceptual design and strategic direction toward meeting
the increasing need for information required to man-
age emissions from fire (Sandberg and others 1999). In
November 1997, after 2 years of drafting and exten-
sive review of a draft plan, 86 experts attended a
national workshop, and using the discussion frame-
work presented in this chapter, they defined the cur-
rent state of knowledge, desired future condition, and
recommendations for research and development for
each cell in the discussion framework.

The strategic plan targets a more technical, scien-
tific, and policy-oriented audience than the smoke
management guide, and recommends a research and
development strategy to reach a desired future state
for smoke management information systems. It also
provides a comprehensive treatment of policy and
technical issues that we will not duplicate in this
volume.

Introduction to Visibility

Air pollution impacts on visibility are discussed in
detail in Introduction to Visibility (Malm 2000). The
discussion is not specific to the impacts of fire but is
relevant because of the regulatory attention given to
fire in the EPA Regional Haze Rule (40 CFR Part 51
1999) and because Federal land managers have the
responsibility of managing fires and the impacts of
fires and all other pollution sources on visibility in
many National Parks and wilderness areas. We make
no attempt in this volume to duplicate this discussion
of the atmospheric physics, meteorology, historic vis-
ibility trends, monitoring and apportionment method-
ologies, or human perceptions that are so admirably
covered in Introduction to Visibility.

The Federal Advisory Committee Act
White Papers

During the 1997 to 1998 development of proposed
national ambient air quality standards (NAAQS) for
PM2.5 (particulate matter with an aerodynamic diam-
eter less than or equal to 2.5 microns) and regional haze
regulations, EPA used provisions of the Federal Advi-
sory Committee Act (FACA) to convene a large group of
stakeholders who were interested in providing input to
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the regulatory process. A FACA committee for the
development of ozone, particulate matter, and regional
haze implementation programs was formed to address
both policy and technical issues. The committee’s Sci-
ence and Technology Wildland Fire Issues Group, one
of several working groups and subcommittees, re-
searched and drafted five reports that are briefly sum-
marized below (EPA 2000c).

Air Monitoring for Wildland Fire Operations pro-
vides recommendations for conducting air-monitoring
programs designed to support fire activities that also
monitor for compliance with NAAQS. It also describes
how monitoring can support burning programs and
how land managers can collaborate with air agencies,
and it provides guidance for selecting monitoring
equipment.

Elements of a Smoke Management Program dis-
cusses recommendations for a basic level smoke man-
agement program. The document summarized infor-
mation from an EPA-sponsored workshop held to
respond to specific questions posed by EPA. The docu-
ment describes the six basic components of a smoke
management program:

• Authorization to burn
• Minimizing emissions
• Burn plan components
• Public education
• Surveillance and enforcement
• Program evaluation

It also provides examples of monitoring methods,
public awareness programs, and program enforcement.

Emission Inventories for State Implementation Plan
[SIP] Development describes several levels of inven-
tory complexity: a default level based on currently
available information; a basic level program that is
considered the minimal program needed to support
SIP development; and a detailed inventory level when
a greater level of analysis or accountability in inven-
tory precision is needed. Elements of each level of
inventory are described, data sources are identified
and data management issues are discussed.

What Wildland Fire Conditions Minimize Emis-
sions and Hazardous Air Pollutants and Can Land
Management Goals Still be Met? This paper is a dis-
cussion of fire conditions and techniques that mini-
mize pollutant emissions. Both wildland emissions
and prescribed fire emissions are discussed. The dis-
cussion of emissions reduction techniques for pre-
scribed burning is also found in Smoke Management
Guide for Prescribed and Wildland Fire: 2001 edition
(Hardy and others 2001).

Estimating Natural Emissions from Wildland and
Prescribed Fire addresses how best to define “natural
emissions” from fire. This is critical to implementing

regional haze goals of reducing visibility degradation
caused by human-made sources of air pollution. The
paper discusses a matrix of choices: (1) emissions from
fire necessary to restore and sustain desired ecosys-
tem characteristics, (2) fire needed to manage fuels to
a condition where they can be dealt with most effec-
tively from a wildfire control standpoint, (3) no net
increase in fire emissions, and (4) no change from
current emissions.

Stakeholders reviewed, discussed, and drafted, ad-
ditional work on these five reports. The reports and
other technical references were considered by EPA
during the formulation of the regional haze regula-
tions and revisions to the particulate matter NAAQS.

Environmental Regulation and Prescribed
Fire Conference

In March 1995 a conference on new developments in
environmental regulations related to prescribed fire
was held in Tampa, FL (Conference Proceedings: Envi-
ronmental Regulation & Prescribed Fire: Legal and
Social Challenges, Bryan 1997). This 3-day meeting
included sessions on challenges and strategies regard-
ing the use of fire, air quality regulation, and liability,
as well as social and economic issues. Sponsored by
numerous State and Federal environmental and for-
estry agencies, the conference provided a forum for
discussion of the Clean Air Act, Endangered Species
Act, and other Federal statutes that guide national,
State, and local regulations pertaining to prescribed
fire.

Significantly, a joint declaration drafted by the con-
ference steering committee and presented to confer-
ence attendees was later signed by representatives of
the EPA, State of Florida, National Biological Survey,
The Wilderness Society, Forest Service, and Mariposa
County, Florida. In summary, the declaration upheld
the following principles:

• Practitioner liability is a major obstacle to the
increased use of fire. Legislation should be
considered on the Federal level to protect
properly certified fire practitioners except in
cases where negligence is proven.

• Partnerships among all of the stakeholders
are vital to the future use of fire. Efforts to
enhance such partnerships must be encour-
aged especially in the exchange of informa-
tion, development of best management prac-
tices, public education campaigns, and funding
initiatives.

• Agencies should work together to evaluate
tradeoffs between public health risks from
fire and ecological damage caused by fire
exclusion.
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• Public education regarding the use of pre-
scribed fire, ecosystem health, and risks of
wildfire versus those from prescribed burning
is encouraged.

• The role of fire in ecosystem management
needs to be understood by all stakeholders.
The ramifications of not using prescribed fire
are serious and must also be appreciated as
limits on fire use may conflict with other
public mandates.

• Actions pertaining to the use of fire must be
based on sound science. There are several
crucial knowledge gaps that must be filled.
Consequences to public safety caused by de-
laying the increases of prescribed fire are
great.

• Public and private property owners need to
retain the right to use prescribed fire to pro-
tect and enhance the productivity of their
lands while also protecting nearby property
owners from adverse impacts of burning.

• Administrators responsible for allocating funds
should do so on the basis of regional priorities
with greater emphasis on prevention than in
the past.

• An increased emphasis on training for pre-
scribed fire practitioners is needed to enhance
public acceptance.

Southern Forestry Smoke Management
Guidebook

The Southern Forestry Smoke Management Guide-
book (Southern Forest Fire Laboratory Personnel 1976)
was one of the first smoke management guidebooks
developed in the United States for use by land, fire,
and air resources managers. The guide provides an
improved understanding of: (1) smoke management
and air quality regulations; (2) contents of smoke and
variables affecting production; (3) smoke transport
and dispersion; (4) potential effects on human health,
human welfare, and visibility; and (5) what can be
done to mitigate its impacts. A system for predicting
and modifying smoke concentrations from prescribed
fires was introduced for Southern fuels.

Changes in Fire Policy ___________
The Federal Wildland Fire Policy (USDI and USDA

1995; USDI and others 2001) requires that “… fire, as
a critical natural process, must be reintroduced into
the ecosystem to restore and maintain sustainable
ecosystems. This will be accomplished across agency
boundaries and will be based on the best available
science.” The policy requires “the use of fire to sustain
ecosystem health based on sound scientific principles

and balanced with other social goals including public
health and safety, air quality, and other specific envi-
ronmental concerns.” Early in the planning process,
action is required to “involve public health and envi-
ronmental regulators in developing the most workable
application of policies and regulations.” Agencies are
called on to “create a system for coordination and
cooperation among land managers and regulators
that explores options within existing laws to allow for
the use of fire to achieve goals of ecosystem health
while protecting individual components of the envi-
ronment, human health, and safety.” The policy also
requires that air quality values be considered during
preparedness and fire protection. When setting pro-
tection priorities, land managers must “define values
to be protected working in cooperation with state,
local, and tribal governments, permittees, and public
users. Criteria will include environmental, commod-
ity, social, economic, political, public health, and other
values.”

Several strategies and funding programs were de-
veloped to improve the ability of managers to fully
implement this policy.

Joint Fire Science Program

The Joint Fire Science Program (JFSP) was created
by Congress in the 1998 Appropriations to Interior
and Related Agencies bill to augment the delivery of
science and information systems necessary to manage
the increased use of fire and other fuel treatments. The
legislation provides a mandate to protect air quality in
conjunction with economic efficiency and ecological
consequences. The program (National Interagency
Fire Center 2002 unpaginated) recognizes that:

Land managers are rapidly expanding the use of fire
for managing ecosystems while air resource managers
are accelerating efforts to reduce the local and regional
impacts of smoke. Smoke management (meeting air
quality standards) is a legal requirement of the Clean
Air Act, as well as a health and safety issue for the
general populace and fireline personnel. The JFSP will
attempt to define these social relationships and de-
velop analytical tools and communication practices to
help mangers include social considerations in decision
making.

One of the goals of the JFSP is “to evaluate various
treatment techniques for cost effectiveness, ecological
consequences, and air quality impacts.” The program
plan states:

Methods have not been developed to assess the oppor-
tunities, costs, and effectiveness of employing smoke
reduction techniques throughout the country. Current
models to assess regional scale cumulative effects on
air quality and water quality will need to be expanded.
The program will develop a nationally consistent sys-
tem of models for fuel consumption, emissions produc-
tion, and smoke dispersal that can assess cumulative
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effect. This research would also contribute to under-
standing the potential national and global impacts of
changes in biomass use, prescribed fire, and wildland
fire on wood supply, atmospheric chemistry, and car-
bon sequestration.

Cohesive Strategy

Protecting People and Sustaining Resources in Fire-
Adapted Ecosystems: A Cohesive Strategy (Laverty
and Williams 2000) is the Federal framework estab-
lished to restore and maintain ecosystem health to
reduce the threat and consequences of wildfires. It is
presumed that fire suppression over the past 100
years has excluded fire from many ecosystems, fueling
conditions for unnaturally intense fires that, among
other effects, threaten air quality. Citing serious air
quality impacts from long duration wildfire episodes
in recent years, the report expresses concern that:

The extent to which management for ecosystem resil-
ience can improve air quality over the long term is not
completely known. Present regulatory policies measure
prescribed fire emissions, but not wildland fire emis-
sions. The emissions policy tends to constrain treat-
ments and – in short interval fire systems — may act to
inadvertently compound wildland fire risks. (p 34)

The cohesive strategy directs land management
agencies to collaborate with the EPA in addressing
long-term impacts, tradeoffs, and issues regarding air
quality and other impacts. The report acknowledges
that programmatic analysis of air quality impacts will
be a necessary step in implementing the planned
increases in prescribed burning necessary to restore
the health of fire-prone ecosystems. The strategy esti-
mates that the USDA Forest Service Regions would
increase fuel treatments by five-fold in the West and
two-fold in the East and South to achieve restoration
goals within 10 years; or employ a slightly smaller
increase to obtain results in 20 years. Most, but not all,
of the treatments would involve burning.

The relative risk to air quality was projected to
decrease by about 25 percent as a result of improving
the resilience of ecosystems, according to current
models.

The cohesive strategy is responsive to regulatory
responsibilities. The planned increase in burning is
constrained in part by the consideration to regulatory
obligations, with an acknowledgment that a more
rigorous assessment of impacts could substantially
change the planned extent and schedule of treat-
ments. Concerns for public health issues and firefighter
safety in relation to smoke are also expressed. The
strategy acknowledges that air quality issues must be
analyzed more thoroughly at smaller scales as it is
stepped down to landscape and project level planning.

National Fire Plan

The National Fire Plan was established in A Report
to the President In Response to the Wildfires of 2000
(USDA and USDI 2000), and implemented using Col-
laborative Approach for Reducing Wildfire Risks to
Communities and the Environment: 10-Year Compre-
hensive Strategy (Western Governors’ Association 2001).
Stakeholder groups under the sponsorship of the USDA
Forest Service, USDI, and the Western Governors’
Association prepared the implementation strategy.
This strategy recognizes that key decisions in setting
priorities for restoration, fire, and fuel management
should be made at local levels. As such, the plan
requires an ongoing process whereby the local, Tribal,
State and Federal land management, scientific, and
regulatory agencies exchange the required technical
information, including the assessment of air quality
tradeoffs, to inform this decisionmaking process. The
strategy has a goal of maintaining and enhancing
community health and economic and social well-be-
ing; and requires that public health risks from smoke
are reduced, airshed visibility is improved, and smoke
management plans are developed in conjunction with
prescribed fire planning and implementation.
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This chapter introduces the regulatory environment
for smoke from prescribed and wildland fire, providing
updated discussion of the laws, regulations, stan-
dards, and regulatory strategies that have changed
since about 1980. We explain roles and responsibili-
ties of the regulatory agencies and land managers, and
we frame the technical discussion in the context of who
needs what information to fulfill legal requirements.

Air pollution is the presence in the atmosphere of
one or more contaminants of a nature, concentration,
and duration to be hazardous to human health or
welfare (Sandberg and others 1999). Welfare includes
potential to harm animal or ecosystem health, eco-
nomic activity, or the comfortable enjoyment of life
and property. Air pollution is created from both hu-
man (that is, anthropogenic) and natural sources.
Anthropogenic air pollution is the presence in the
atmosphere of a substance or substances added di-
rectly or indirectly by a human act, in such amounts as
to adversely affect humans, animals, vegetation, or
materials (Williamson 1973). Air pollutants are clas-
sified into two major categories: primary and second-
ary. Air pollutant emissions, or simply “emissions,”
are the production and release of air contaminants
emitted from fires that have a potential to cause air
pollution. This definition includes particulates, hydro-
carbons, carbon monoxide (CO), metals, and all other

Chapter 2: Air Quality
Regulations and Fire

trace gases that may be hazardous or that are chemi-
cal precursors to secondary air pollution. Primary
pollutants are those directly emitted into the air.
Under certain conditions, primary pollutants undergo
chemical reactions within the atmosphere and pro-
duce new substances known as secondary pollutants.
Hazardous air pollutants are a special class of air
pollutants identified in the Clean Air Act Amend-
ments of 1990 as constituting a hazard to human
health.

Air quality is a measure of the presence of air
pollution. Ambient air quality is defined by the Clean
Air Act of 1963 as the air quality anywhere people have
access, outside of industrial site boundaries. Ambient
air quality standards are standards of air quality
designed to protect human health or welfare. Air
resource management includes any activity to antici-
pate, regulate, or monitor air pollution, air pollutant
emissions, ambient air quality, or the effects of air
pollution resulting from fires or fire management.

In the past, emissions from prescribed fire were
considered human-caused, and wildland fires were
considered natural sources of emissions. But recent
policy debate has focused on what should be consid-
ered natural; that is, to be reasonably unaffected by
human influence. This debate resulted from the
paradox that not all wildland fires are vigorously
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suppressed and that some prescribed burning is
done to maintain healthy natural ecosystems where
fire has previously been excluded.

Air resource management includes any activity to
anticipate, regulate, or monitor air pollution, air pol-
lutant emissions, ambient air quality, or the effects of
air pollution resulting from fires or fire management.

Emissions and impacts on air quality from fires are
managed and regulated through a complex web of
interrelated laws and regulations. The primary legal
basis for air quality regulation across the nation is the
Federal Clean Air Act (CAA), which is actually a series
of acts, amendments, and regulations that include:

• Federal Air Pollution Control Act of 1955 (PL
84-159). Provides for research and technical
assistance and authorizes the Secretary of
Health, Education, and Welfare to work to-
ward a better understanding of the causes and
effects of air pollution.

• Federal Clean Air Act of 1963 (PL 88-206).
Empowers the Secretary of Health, Educa-
tion, and Welfare to define air quality criteria
based on scientific studies. Provides grants to
state and local air pollution control agencies.

• Federal Air Quality Act of 1967 (PL 90-148).
Establishes a framework for defining “air qual-
ity control regions” based on meteorological
and topographical factors of air pollution.

• Federal Clean Air Act Amendments of 1970
(PL 91-604). Principal source of statutory au-
thority for controlling air pollution. Estab-
lishes basic U.S. program for controlling air
pollution.

• Environmental Protection Agency (EPA) pro-
mulgates national ambient air quality stan-
dards (NAAQS) for particulates, photochemi-
cal oxidants (including ozone), hydrocarbons,
carbon monoxide, nitrogen dioxide, and sulfur
dioxide (1971).

• Clean Air Act Amendments of 1977 (PL 95-
95). Sets the goal for visibility protection
and improvement in Class I areas and as-
signs Federal land managers the affirma-
tive responsibility to protect air quality re-
lated values.

• Clean Air Act Amendments of 1990 (PL 101-
549). Establishes authority for regulating re-
gional haze and acknowledges the complexity
of the relation between prescribed and wild-
land fires.

• Regional Haze Regulations, Final Rule (40
CFR Part 51) (1999). EPA promulgates the
Regional Haze Rule supported in part by the
1998 Interim Air Quality Policy on Wildland
and Prescribed Fires.

Roles and Responsibilities Under
the Clean Air Act ________________

States have the lead in carrying out provisions of the
Clean Air Act because appropriate and effective de-
sign of pollution control programs requires an under-
standing of local industries, geography, transporta-
tion, meteorology, urban and industrial development
patterns, and priorities. The EPA has the task of
setting air quality standards (national ambient air
quality standards, or NAAQS). In addition, EPA de-
velops policy and technical guidance describing how
various Clean Air Act programs should function and
what they should accomplish. States develop State
implementation plans (SIPs) that define and describe
customized programs they will implement to meet
requirements of the Clean Air Act. Tribal lands are
legally equivalent to State lands, and Tribes prepare
Tribal implementation plans (TIPs) to describe how
they will implement the Clean Air Act. Individual
States and Tribes can require more stringent air
quality standards but cannot weaken clean air goals
set by EPA.

Federal land managers have the complex role of
managing a fire as a source of air pollutants, while
fulfilling monitoring and regulatory responsibilities
tied to visibility and regional haze. Federal land
managers are given the responsibility by the Clean
Air Act for reviewing prevention of significant dete-
rioration (PSD) permits (discussed later in this chap-
ter) of major new and modified stationary pollution
sources and commenting to the State on whether
there is concern for visibility impacts (or other re-
source values) in Class I areas downwind of the
proposed pollution source. Some States require mod-
eling of source impacts on Class I areas, and Federal
land managers customarily comment on the model
results.

The 1990 Clean Air Act Amendments require
planned Federal actions to conform to SIPs. This
“general conformity rule” prohibits Federal agencies
from taking any action within a nonattainment or
maintenance area that (1) causes or contributes to a
new violation of air quality standards, (2) increases
the frequency or severity of an existing violation, or
(3) delays the timely attainment of a standard as
defined in the applicable SIP or area plan. The gen-
eral conformity rule covers direct and indirect emis-
sions of criteria pollutants, or their precursors, which
are caused by a Federal action, are reasonably
foreseeable, and can practicably be controlled by
the Federal agency through its continuing program
responsibility.
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National Ambient Air Quality
Standards______________________

The purpose of the Clean Air Act is to protect
humans against negative health or welfare effects
from air pollution. National ambient air quality stan-
dards (NAAQS) are defined in the Clean Air Act as
amounts of pollutant above which detrimental effects
to public health or welfare may result. NAAQS have
been established for the following criteria pollutants:
particulate matter (PM10 and PM2.5; NAAQS for
particulate matter are established for two aerody-
namic diameter classes: PM10 is particulate matter
less than 10 microns in diameter, and PM2.5 is less
than 2.5 microns in diameter; total suspended particu-
late matter is called PM or sometimes TSP), sulfur
dioxide (SO2), nitrogen dioxide (NO2), ozone, carbon
monoxide (CO) and lead (Pb) (table 2-1). Primary
NAAQS are set at levels to protect human health;
secondary NAAQS are to protect human welfare ef-
fects including visibility as well as plant and materials
damage.

An area that is found to be in violation of a primary
NAAQS is labeled a nonattainment area (fig. 2-1); an
area once in nonattainment but recently meeting
NAAQS, and with appropriate planning documents
approved by EPA, is a maintenance area; all other
areas are attainment or unclassified (due to lack of
monitoring). State air quality agencies can provide
up-to-date locations of local nonattainment areas
(PM2.5 is a newly regulated pollutant, so attainment/
nonattainment status had not been determined at the
time of publication of this document; monitoring must

take place for at least 3 years before designation can be
made, which means PM2.5 status will likely not be
known until at least 2003). States are required through
their SIPs to define programs for implementation,
maintenance, and enforcement of the NAAQS within
their boundaries. Wildland fire in and near
nonattainment areas will be scrutinized to a greater
degree than in attainment areas and may be subject to
general conformity rules. Extra planning, documenta-
tion, and careful scheduling of prescribed fires will
likely be required to minimize smoke effects in the
nonattainment area to the greatest extent possible. In
some cases, the use of fire may not be possible if
significant impacts to a nonattainment area are likely.

The major pollutant of concern in smoke from fire is
fine particulate matter, both PM10 and PM2.5. Stud-
ies indicate that 90 percent of all smoke particles
emitted during wildland burning are PM10, and 90
percent of PM10 is PM2.5 (Ward and Hardy 1991). The
most recent human health studies on the effects of
particulate matter indicate that fine particles, espe-
cially PM2.5, are largely responsible for health effects
including mortality, exacerbation of chronic disease,
and increased hospital admissions (Dockery and oth-
ers 1993; Schwartz and others 1996).

Prevention of Significant
Deterioration ___________________

Another provision of the Clean Air Act with some
applicability to wildland burning activities is the pre-
vention of significant deterioration (PSD) provisions.

Table 2-1—National ambient air quality standards (NAAQS) (U.S. Environmental Protection
Agency 2000b). Primary NAAQS are set at levels to protect human health;
secondary NAAQS are to protect human welfare.

Pollutant Averaging time Primary Secondary

PM10 Annual arithmetic mean 50 µg/m3 a 50 µg/m3

24-hour average 150 µg/m3 150 µg/m3

PM2.5 Annual arithmetic mean 15 µg/m3 15 µg/m3

24-hour average 65 µg/m3 65 µg/m3

Sulfur dioxide (SO2) Annual average 0.03 ppmb —
24-hour average 0.14 ppm —
3-hour average — 0.50 ppm

Carbon monoxide (CO) 8-hour average 9 ppm —
1-hour average 35 ppm —

Ozone (O3) 8-hour average 0.12 ppm 0.12 ppm
1-hour average 0.08 ppm 0.08 ppm

Nitrogen dioxide (NO2) Annual average 0.053 ppm 0.053 ppm
Lead (Pb) Quarterly average 1.5 µg/m3 1.5 µg/m3

aµg/m3 = micrograms per cubic meter.
bppm = parts per million.
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The goal of PSD is to prevent areas that are currently
cleaner than is allowed by the NAAQS from being
polluted up to the maximum ceiling established by the
NAAQS. Three air quality classes were established by
the Clean Air Act PSD provisions including Class I
(which allows very little additional pollution), Class II
(which allows some incremental increase in pollution),
and Class III (which allows pollution to increase up to
the NAAQS). Class I areas include wildernesses and
national memorial parks over 5,000 acres, National
Parks exceeding 6,000 acres, and all international
parks that were in existence on August 7, 1977, as well
as later expansions to these areas (fig. 2-2).

Historically, EPA has regarded smoke from wild-
land fires as temporary and therefore not subject to
issuance of a PSD permit; whether or not wildland
fire smoke should be considered when calculating
PSD increment consumption or PSD baseline was not

defined. EPA recently reaffirmed that States could
exclude prescribed fire emissions from increment
analyses provided the exclusion does not result in
permanent or long-term air quality deterioration
(EPA 1998). States are also expected to consider the
extent to which a particular type of burning activity
is truly temporary, as opposed to an activity that
could be expected to occur in a particular area with
some regularity over a long period. Oregon is the only
State that has chosen to include prescribed fire emis-
sions in PSD increment and baseline calculations.

Visibility _______________________
The 1977 amendments to the Clean Air Act include

a national goal of “the prevention of any future, and
the remedying of any existing, impairment of visibility

Figure 2-1—PM10 nonattainment areas as of May 2002. Current nonattainment status for PM10 and all other criteria
pollutants are available from the Environmental Protection Agency (EPA) aerometric information retrieval system
(AIRS) Web page at http://www.epa.gov/air/data/index.html (EPA 2002).
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in mandatory Class I Federal areas which impairment
results from manmade air pollution” (42 U.S.C §
7491). States are required to develop implementation
plans that make “reasonable progress” toward the
national visibility goal.

Atmospheric visibility is affected by scattering and
absorption of light by particles and gases. Particles
and gases in the air can obscure the clarity, color,
texture, and form of what we see. Fine particles most
responsible for visibility impairment are sulfates, ni-
trates, organic compounds, elemental carbon (or soot),
and soil dust. Sulfates, nitrates, organic carbon, and
soil tend to scatter light, whereas elemental carbon
tends to absorb light. Fine particles (PM2.5) are more
efficient per unit mass than coarse particles (PM10
and larger) at causing visibility impairment. Natu-
rally occurring visual range in the Eastern United
States is estimated to be between 60 and 80 miles,
while natural visual range in the Western United
States is between 110 and 115 miles (these estimates
do not consider the effect of natural fire on visibility)

(Trijonis and others 1991). Currently, visual range in
the Eastern United States is about 15 to 30 miles and
about 60 to 90 miles in the Western United States. (40
CFR Part 51). The theoretical maximum visual range
about 240 miles.

Regional Haze

Regional haze is visibility impairment produced by
a multitude of sources and activities that emit fine
particles and their precursors and are located across a
broad geographic area. This contrasts with visibility
impairment that can be traced largely to a single, large
pollution source. Until recently, the only regulations
for visibility protection addressed impairment that is
reasonably attributable to a permanent, large emis-
sions source or small group of large sources. In 1999,
EPA issued regional haze regulations to manage and
mitigate visibility impairment from the multitude of
diverse regional haze sources (40 CFR Part 51). The
regional haze regulations call for States to establish

Figure 2-2—Mandatory class 1 areas (Hardy and others 2001).
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goals for improving visibility in Class I National Parks
and wildernesses, and to develop long-term strategies
for reducing emissions of air pollutants that cause
visibility impairment.

Regional Haze Planning Process—Because re-
gional haze is a multi-State issue, regional haze regu-
lations encourage States, land managers, and other
stakeholders to work together to develop control pro-
grams through regional planning organizations that
can coordinate development of strategies across a
multi-State region. In the Western United States, the
Western Regional Air Partnership (WRAP), sponsored
through the Western Governors’ Association and the
National Tribal Environmental Council, is coordinat-
ing regional planning and technical assessments. The
WRAP was the first of five regional planning organiza-
tions to be established and has been active in many
technical and policy developments. Other regional
planning organizations have begun assessments of
fire and air quality in their regions. In the Eastern

United States, four formal groups are addressing
planning issues: CENRAP (Central States Regional
Air Partnership), OTC (Ozone Transport Commis-
sion), VISTAS (Visibility Improvement State and Tribal
Association of the Southeast); and the Midwest Re-
gional Planning Organization (fig. 2-3).

As inter-State smoke transport becomes a larger
issue, agencies are expanding coordination of their
burns. Multi-State, interagency partnerships are de-
veloping to help coordinate burning and mitigate cu-
mulative impacts of smoke. For example, the Mon-
tana/Idaho airshed group includes private, State,
Tribal, and Federal partners in supporting an inte-
grated smoke management program that includes
emissions monitoring and smoke forecasting (Levinson
2001).

Regional Haze and Fire Emissions—The adop-
tion of regional haze regulations marks a turning
point in how fire emissions are treated under the
nation’s Federal and State air quality regulations,

Figure 2-3—Regional air quality planning groups (Hardy and others 2001).
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although the regulations leave several definitions
open to subsequent policy interpretation:

• The role of fire in forest ecosystems is formally
recognized for the first time.

• Emissions from “natural” sources are distin-
guished from “anthropogenic” sources and
treated differently under the rule.

• The rule is the first to require development of
emissions inventories for fire, including wild-
land fires.

• Emissions from fire are now subject to re-
gional air quality planning processes as well
as requirements to achieve “reasonable
progress” in emissions reductions

The policy discussion to determine what types of fire
emissions are considered natural is still in progress,
but the WRAP has recommended a national policy
that would (1) define “natural background” as fire
emissions that would occur in the future without fire
management; that is, without reference to historic fire
occurrence or historic vegetation types; and (2) include
prescribed burning as natural sources of visibility
impacts when fire is used to maintain healthy and
sustainable ecosystems.

Current data from a national visibility-monitoring
network (Sisler and others 1996) do not show fire to be
the predominant long-term source of visibility impair-
ment in any Class I area (40 CFR Part 51), although
emissions from fire are an important episodic con-
tributor to visibility-impairing aerosols. Certainly the
contribution to visibility impairment from fires can be
significant over short periods, but fires in general
occur relatively infrequently and thus have a lesser
contribution to long-term averages. Specific goals for
visibility improvement focus efforts on improving air
quality on the most impaired days, so fires may prove
to be an important target for control efforts in some
areas

Fire Consortia for Advanced Modeling of Me-
teorology and Smoke (FCAMMS)—Multiagency
consortia are building in the Pacific Northwest, Rocky
Mountain region, and Northeastern and Southeast-
ern United States as part of the U.S. Department of
Agriculture, Forest Service, Fire Consortia for Ad-
vanced Modeling of Meteorology and Smoke. The Pa-
cific Northwest consortium is developing a real-time
smoke prediction and emission tracking system that
addresses needs of several smoke management plans
from collaborating States, Tribes, and local air agen-
cies (Ferguson and others 2001). California and
Nevada are working together through the California
and Nevada Smoke and Air Committee (CANSAC)
with similar objectives of tracking and predicting
cumulative smoke impacts (Chris Fontana, personal
communication).

Each group or regional consortium must respond to
local, State, and Tribal smoke management programs.
In addition, each region of the country has its own
particular atmospheric processes that impact fire be-
havior and smoke dispersion in different ways. For
example, while in the Southeast, timing of frontal
passages and onshore flow regimes become critical, in
the Western United States, complex flow through
mountainous terrain is an important consideration in
managing smoke. These regionally specific demands
are forcing research to focus on subtle aspects of smoke
emissions and dispersion instead of traditional devel-
opment of worst-case air pollution scenarios.

Reasonable Progress

Visibility rules require States to make “reasonable
progress” toward the Clean Air Act goal of “prevention
of any future, and the remedying of any existing,
impairment of visibility.” The regional haze regula-
tions did not define visibility targets but instead gave
States flexibility in determining reasonable progress
goals for Class I areas. States are required to conduct
analyses to ensure that they consider the possibility of
setting an ambitious reasonable progress goal, one
that is aimed at reaching natural background condi-
tions in 60 years. The rule requires States to establish
goals for each affected Class I area to (1) improve
visibility on the haziest 20 percent of days, and (2)
ensure no degradation occurs on the clearest 20 per-
cent of days over the period of each implementation
plan.

States are to analyze and determine the rate of
progress needed for the implementation period ex-
tending to 2018 such that, if maintained, this rate
would attain natural visibility conditions by the year
2064. To calculate this rate of progress, each State
must compare baseline visibility conditions to esti-
mate natural visibility conditions in Class I areas and
to determine the uniform rate of visibility improve-
ment that would need to be maintained during each
implementation period to attain natural visibility con-
ditions by 2064. Baseline visibility conditions will be
determined from data collected from a national net-
work of visibility monitors representing all Class I
areas in the country for the years 2000 to 2004. Each
State must determine whether this rate and associ-
ated emissions reduction strategies are reasonable
based on several statutory factors. If the State finds
that this rate is not reasonable, it must provide a
demonstration supporting an alternative rate.

Hazardous Air Pollutants _________
Hazardous air pollutants (HAPs) are identified in

Title III of the Clean Air Act Amendments of 1990
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(PL 101-549) as 188 different pollutants “which present,
or may present, through inhalation or other routes of
exposure, a threat of adverse human health or envi-
ronmental effects whether through ambient concen-
trations, bioaccumulation, deposition, or other routes.”
The list of HAPs identified in the Clean Air Act are
substances that are known or suspected to be carcino-
genic, mutagenic, teratogenic, neurotoxic, or which
cause reproductive dysfunction.

EPA Interim Air Quality Policy on
Wildland and Prescribed Fires_____

In 1998, the EPA issued a national policy to address
how best to achieve national clean air goals while
improving the quality of wildland ecosystems through
the increased use of fire. The Interim Air Quality
Policy on Wildland and Prescribed Fires (U.S. Envi-
ronmental Protection Agency 1998) was developed
through a partnership effort involving EPA, the U.S.
Departments of Agriculture, Defense, and the Inte-
rior, State foresters, State and Tribal air regulators,
and others. The group that developed the policy relied
on the assumption that properly managed prescribed
fires can improve the health of wildland ecosystems
and reduce the health and safety risks associated with
wildfire, while meeting clean air and public health
goals through careful planning and cooperation
among land managers, air quality regulators, and local
communities.

Natural Events Policy ____________
PM10 NAAQS exceedances caused by natural events

are not counted toward nonattainment designation if
a State can document that the exceedance was truly
caused by a natural event and prepares a natural
events action plan (NEAP) to address human health
concerns during future events (Nichols 1996). Natural
events are defined by this policy as wildfire, volcanic,
seismic, and high wind events.

A wildfire NEAP should include commitments by
the State and stakeholders to:

1. Establish public notification and education pro-
grams.

2. Minimize public exposure to high concentrations
of PM10 due to future natural events such as by:
a. Identifying the people most at risk.
b. Notifying the at-risk public that an event is

active or imminent.
c. Recommending actions to be taken by the

public to minimize their pollutant exposure.
d. Suggesting precautions to take if exposure

cannot be avoided.

3. Abate or minimize controllable sources of PM10
including the following:
a. Prohibition of other burning during pollution

episodes caused by wildfire.
b. Proactive efforts to minimize fuel loadings in

areas vulnerable to fire.
c. Planning for prevention of NAAQS exceedances

in fire management plans.

4. Identify, study, and implement practical mitigat-
ing measures as necessary.

5. Periodic reevaluation of the NEAP.

Collaboration Among
Stakeholders ___________________

Because smoke from fire can negatively affect public
health and welfare, air quality protection regulations
must be understood and followed by responsible fire
managers. Likewise, air quality regulators need an
understanding of how and when fire use decisions are
made and should become involved in fire and smoke
management planning processes, including the as-
sessment of when and how alternatives to fire will be
used. Cooperation and collaboration between fire
managers and air quality regulators is of great impor-
tance. Table 2-2 contains recommendations for vari-
ous types of cooperation by these two groups depend-
ing on the applicable air quality protection instrument.

Best Available Control
Measures ______________________

The application of best available control measures
(BACM) for prescribed fire is a required element of
State implementation plans for PM10 nonattainment
areas that are significantly impacted by prescribed
fire smoke (EPA 1992a). The application of BACM is
also a requirement of EPA’s Air Quality Policy on
Wildland and Prescribed Fires (EPA 1998) (see “Prior
Work” section in chapter 1). EPA’s BACM guidance
includes basic smoke management program elements
and emissions reduction techniques that can be used
by land managers to minimize air quality impacts
from fire. These program elements and emissions
reduction techniques are fully documented in the
Smoke Management Guide for Prescribed and Wild-
land Fire: 2001 Edition (Hardy and others 2001).

Briefly, the BACM guidance notes that there are
two basic approaches to minimizing the impact of
prescribed fire on air quality: reducing the amount of
pollutants emitted, or reducing the impact of the
pollutants emitted on sensitive locations or regional
haze through smoke dilution or transport (redistribut-
ing emissions). Although each method can be discussed
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independently, fire practitioners often choose fire and
fuels manipulation techniques that complement or are
at least consistent with meteorological scheduling for
maximum smoke dispersion and favorable plume trans-
port. The following emissions reduction and redistrib-
uting emissions techniques are a compilation of our
knowledge base, and depending on specific fire use
objectives, the project locations, time, and cost con-
straints may or may not be applicable.

Reducing Emissions

At least 24 methods within six major classifications
have been used to reduce emissions from prescribed
burning (Hardy and others 2001). These techniques
include methods designed to minimize emissions by
reducing the area burned; reducing the fuel load by
reducing the fuel production, or fuel consumption, or
both; scheduling burns before new fuels appear; and
increasing combustion efficiency. Each of these meth-
ods has specific practices associated with it.

Redistributing Emissions

These measures are commonly practiced in smoke
management programs and include burning when
dispersion is good, cooperating with other burners in

Table 2-2—Recommended cooperation between wildland fire managers and air quality regulators, depending on air quality
protection instrument (Hardy and others 2001).

Air quality protection instrument Wildland fire managers Air quality regulators

National ambient air quality standards (NAAQS) Awarea Lead b

Attainment status Aware Lead
State implementation plan (SIP) planning and development Involvedc Lead
Conformity Involved Lead
Smoke management programs Partnerd Lead
Visibility protection Involved Lead
Regional planning groups Partner Lead
Natural emissions Partner Lead
Natural events action plan Partner Lead
Land use planning Lead Involved
Project NEPA documents Lead Involved
Other fire planning efforts Lead Involved

aAware: Responsibility to have a complete working knowledge of the air quality protection instrument but likely little or no involvement in its
development or daily implementation.

bLead: Responsibility to initiate, bring together participants, complete, and implement the particular air quality protection instrument.
cInvolved: Responsibility to participate in certain components of development and implementation of the air quality protection instrument although

not at full partner status.
dPartner: Responsibility to fully participate with lead organization toward development and implementation of the air quality protection instrument

in a nearly equal relationship.

a single airshed to schedule burns, avoiding sensitive
areas, burning smaller units, and burning more
frequently.

Ozone and Fire _________________
Ozone is a criteria air pollutant, but there is little

monitoring or research data that directly link fire
emissions with ground-level ozone concentrations.
Regulating efforts to reduce ozone have therefore
focused on more obvious industrial and urban sources
of the pollutants that form ozone (NOX and VOCs).
Fires are known to emit VOCs and a minor amount of
NOX, but much is uncertain about the magnitude of
ozone formation in the plume, the degree of mixing
with urban sources of ozone precursors, and transport
of ozone to ground level. EPA plans to begin including
fire emissions in future regional ozone strategy model-
ing. Field observations of ozone formation in smoke
plumes from fires date back nearly 25 years when
measurements from aircraft detected ozone at the
edge of forest fire smoke plumes aloft. A recent study
(Wotawa and Trainer 2000) did link high ground-level
ozone concentrations to forest fire plumes that had
been transported great distances. Chapter 6 explores
these issues more fully.
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Chapter 3: Overview of Air
Pollution from Fire

This chapter provides a brief overview of and an
appreciation for the national, regional, and local im-
portance of smoke to ambient air quality. We discuss
the significance of fire emissions and air quality im-
pacts on a national and regional scale. Chapter 7 of
this document adds additional depth to this discus-
sion.

Magnitude of Fire
Contributions___________________

Air quality impacts associated with wildland fires
are distinguished from those resulting from prescribed
burning because emissions from these two sources
have in the past been treated differently under the
Clean Air Act and by State and local air quality
regulations. In addition, it is important to have a
historical perspective of these issues given the in-
creased use of fire in the recent past.

A comparison by Leenhouts (1998) of estimated
levels of biomass burning suggests that 10 times more
area burned annually in the pre industrial era than in
the contemporary era. After accounting for land use
changes such as urbanization and agriculture,
Leenhouts concluded that about 50 percent of histori-
cal levels would burn today if historical fire regimes
were restored to all wildlands to maintain ecosystem

health (figs. 3-1 and 3-2). This suggests a four- to six-
fold increase from the current magnitude of wildland
fire emissions.

This section discusses: (1) smoke from wildland
fires; (2) smoke from prescribed fires; (3) impacts on
national ambient air quality standards (NAAQS); (4)
and magnitude with respect to regional and subre-
gional scale visibility degradation. The second section
discusses smoke management programs.

Smoke from Wildland Fires

Although wildland fires occur throughout the na-
tion, the largest fires and greatest number of fires
occur in Alaska, the Southeastern States, and the
West. Figure 3-3 shows the location of major fires
during the 2000 fire season when 90,674 fires burned
7,259,159 acres (2,938,931 ha) at a fire suppression
cost of $1.6 billion. The 10-year average acreage burned
between 1990 and 1999 was 3.78 million acres (1.53
million ha), testifying to the severity of the 2000
wildfire season. Figure 3-4 shows those States that
had more than 100,000 acres (40,486 ha) burned per
year, on average, over the 1987 through 1997 period,
illustrating that Alaska wildfires burn far more
acres than fires in any other State. Area burned in
California, the States in the Intermountain West,
Florida, and the Southwest follow (Peterson 2000).
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Figure 3-2—Estimated annual preindustrial, expected con-
temporary, and contemporary biomass consumed (Tg x102) for
the conterminous United States (from Leenhouts 1998).

Wildfires occur throughout the year. The 2000 wild-
fire season began with a Florida fire on January 1,
continued with two 40,000-acre fires in New Mexico,
an early May, 47,000-acre fire near Los Alamos and
peaked on August 29, 2000, when fires that eventually
burned 1,642,579 acres were burning in 16 States
(NIFC 2001a). Generally, the occurrence of wildfires
moves northward from the Southeastern and South-
western States as summer approaches, fuels dry and
fire danger increases.

Figure 3-1—Estimated annual preindustrial, expected con-
temporary, and contemporary area (Mha) for the conterminous
United States (from Leenhouts 1998).

Wildfires, both in number and total acreage burned,
vary widely from year to year and from region to
region. Figures 3-5 and 3-6 show no consistent relation
between the number of fires and acres burned. It is
known, however, that smoke from these fires impacts
air quality on both an episodic and long-term average
basis over wide regions.

Wildfires occur as episodic events. For example, in
1999, smoke from fires reduced visibility to less than
100 feet (30 m) in Florida, prompting officials to advise
people with respiratory problems to stay indoors (New
York Daily News 1999). In the West, fires in six States
(California, Nevada, Oregon, Montana, Washington,
and Idaho) put thick smoke in many communities. In
Reno and cities in California’s Central Valley, smoke
from nearby wildfires prompted authorities to warn
residents with asthma to avoid unnecessary activity
(USA Today 1999). Wildfire smoke is also transported
across international boundaries. Fires in Canada were
found to cause high concentrations of carbon monoxide
and ozone over a period of 2 weeks in the Southeastern
United States and across the Eastern seaboard during
the summer of 1995 (Wotawa and Trainer 2000).

Smoke impacts during these episodic events can
threaten public health, cause smoke damage to build-
ings and materials, and disrupt community activities.
Although particulate concentrations in ambient air
rarely reach health-threatening levels within major
cities, several communities in the United States have
experienced particulate matter concentrations from
wildfire smoke that exceeded the Environmental Pro-
tection Agency (EPA) significant harm emergency
action level of 600 µg/m3 defined as an “imminent and
substantial endangerment of public health” (EPA
1992b).

For example, the Yellowstone National Park wildfires
of 1988 impacted communities in three States. Concen-
trations of suspended particulate matter — both total
suspended particulate (TSP) and PM10 — measured in
communities near the fires exceeded NAAQS, triggering
public health alerts and advisories (Core 1996). An
estimated 200,000 people were exposed to high concen-
trations of smoke. In 1987, the Klamath fires of northern
California burned for more than 60 days, resulting in
widespread smoke intrusions into numerous communi-
ties in northern California and southern Oregon. More
recently, wildfire impacts during the 2000 season were
also severe in several communities. Twenty-four aver-
age PM10 concentration measured in Salmon, ID, reached
225 µg/m3 on August 15, 2002, and 281 µg/m3 on August
18, 2000, during wildfire smoke intrusions (Idaho De-
partment of Environmental Quality n.d.).

Wildfire smoke can also be the dominant cause of
visibility reduction during episodic events in the
Rocky Mountain States, on the Pacific Coast, and in
the Southeast (National Research Council [NRC]
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Figure 3-3—Location of major wildfires in 2000 available at http://www.nifc.gov/fireinfo/2000/Top10fires.html.

Figure 3-4—States with more than 100,000 acres per year burned by wildfires.
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Figure 3-5—Number of wildfires per year 1990 through 1999 (National Interagency Fire Center 2002).

Figure 3-6—Number of acres burned by wildfires per year 1990 through 1999.
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1993). Figures 3-7 and 3-8 are examples of the dense
plumes of smoke that can be transported over hun-
dreds of kilometers across State and international
boundaries, degrading air quality, scenic values, and

highway safety. Between 1979 and 1988, 28 fatali-
ties and more than 60 serious injuries were attrib-
uted to smoke that drifted across roadways in the
Southern United States (Mobley 1989).

Figure 3-7—Big Bar Fire, Shasta-Trinity National Forest, California, August 1999
(National Interagency Fire Center 2000).

Figure 3-8—Wildfire smoke transported across State lines, August 14,
2000 (NASA).
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Smoke from Prescribed Fires

On a national annual basis, PM10 emissions from
prescribed burns in 1989 were estimated to be over
600,000 tons, half of which (380,000 tons) occurred in
the Southeastern States. Of the remaining 42 States,
seven (Arizona, California, Idaho, Montana, Oregon,
Texas, and Washington) were estimated to have an-
nual emissions over 10,000 tons of PM10 from pre-
scribed forest and rangeland burning (EPA 1992a;
Peterson and Ward 1990). More recent estimates of
prescribed fire PM2.5 emissions in the West (EPA
regions 8, 9 and 10) totaled 193,293 tons (Dickson and
others 1994). These national, annual estimates are
less significant in terms of air quality impact than
those prepared at the State level. For example, the
211,000 tons of prescribed fire PM10 emissions in
Georgia in 1989 is about 30 percent of the total esti-
mated particulate inventory for all sources (EPA
1992a). On a seasonal basis, emissions from pre-
scribed burning are likely to be an even more signifi-
cant percentage of total emissions in some States.

Acreage treated by prescribed burning on Federal
lands increased from 918,300 acres in 1995 to 2,240,105
acres in 1999, demonstrating renewed interest in the
use of fire as an important tool in the management of
wildlands (NIFC 2001b).

Impacts on National Ambient Air Quality
Standards

Characterization of the true extent of effects of
prescribed and wildland fires on ambient air quality is
incomplete due to the deficiency of air quality monitor-
ing sites in rural areas. Also, particulate standards are
based on 24-hour and annual averages, whereas smoke
plumes may significantly degrade air quality in a
community for just a few hours before moving or
dispersing. These short-term, acute impacts likely
cause discomfort at the least, and possibly even affect
health, but may not result in a violation of the NAAQS.

Numerous exceedances of 24-hour PM10 and PM2.5
standards have been attributed to wildfires but, as
mentioned previously, violations of NAAQS caused by
wildfire do not result in nonattainment if a State can
document that the cause of the violation was truly
wildfire and then prepares a natural events action
plan for future events.

At present, prescribed fires are not considered to be
a significant cause of nonattainment, but with in-
creased burning to reduce fuels, this situation may
change as land managers move forward with imple-
menting a several-fold increase in the use of fire to
sustain ecosystems (USDI and USDA 1995; USDA
1997). In general, little information is available on a
national level to identify the contribution of prescribed
burning to PM10 or PM2.5 within nonattainment

areas (EPA 1992a). It appears, however, that there is
no clear relation between total acres burned (or par-
ticulate emissions) and the nonattainment status of
nearby airsheds, possibly because of successful smoke
management programs.

In areas where air quality standards are being or
may be violated, however, land managers are being
directed to reduce air quality impacts through smoke
management programs. This is because any source
that contributes even a few micrograms per cubic
meter of particulate matter toward violation of the
NAAQS may be required to reduce emissions to assure
that air quality standards are attained.

Significance of Visibility Degradation

As noted above, wildland fires can significantly
degrade visibility during episodic events. With the
new emphasis on the reduction of regional haze in the
Class I National Parks and wilderness areas of the
nation, smoke from fire is of special concern, especially
in the West. In their report to the EPA, the Grand
Canyon Visibility Transport Commission (GCVTC)
noted that emissions from fire, both wildland fire and
prescribed fire, are likely to have the single greatest
impact on visibility at Class I areas through 2040.
During periods of intense fire activity, smoke from
wildland fires is likely to make the worst 20 percent of
days at the Grand Canyon even worse rather than
impair visibility on clear days (GCVTC 1996b). The
Commission recommended several actions to reduce
impacts on regional haze including enhanced smoke
management programs and establishment of annual
emissions goals for all fire programs.

Greenhouse Gas Emissions from Fires

Globally, fires are a significant contributor of carbon
dioxide and other greenhouse gases in the atmosphere.
Fires account for approximately one-fifth of the total
global emissions of carbon dioxide (Levine and Cofer
2000; Schimel 1995). Andreae and Merlet (2001) cal-
culate that 5,130 Tg per year of biomass is consumed
in fires, emitting 8,200 Tg per year of carbon dioxide,
413 Tg per year of carbon monoxide, and 19.4 Tg per
year of methane. The accuracy of these global esti-
mates is thought to be within plus or minus 50 percent,
with the bulk of the error resulting from inaccuracies
in the estimates of the area burned and the mass of
fuel consumed.

Fires in temperate ecosystems are minor contribu-
tors compared to the world’s savannas, boreal forests,
and tropical forests. More than 60 percent of the totals
listed in the previous paragraph are released from
savannas and grasslands, and another 25 percent
from tropical forests. Burning in tropical Africa is
dominated by savanna fires; in tropical Asia, by forest
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fires; and in tropical South America, about equally
represented by savannas and tropical forests (Hao and
Liu 1994). Lavoué and others (2000) detail contribu-
tions from temperate and boreal fires, demonstrating
that about 90 percent of the global boreal fire area is
in Russia and Canada. Alaska accounts for only about
4.5 percent of the global boreal forest, but it accounts
for at least 10 percent of the emissions from that
source, because of the heavier fuel loads in Alaska.
Alaska accounts for an average of 41 percent of total
U.S. fire emissions, with a huge year-to-year variabil-
ity. In 1990, 89 percent of U.S. fire emissions were
from Alaska fires.

Smoke Management
Programs ______________________

Smoke management programs establish a basic
framework of procedures and requirements when
managers are considering resource benefits. These
programs are typically developed by States and Tribes
with cooperation and participation by wildland own-
ers and managers. The purposes of smoke manage-
ment programs are to mitigate the nuisance (such as
impacts on air quality below the level of ambient
standards) and public safety hazards (such as visibil-
ity on roads and airports) posed by smoke intrusions
into populated areas; to prevent significant deteriora-
tion of air quality and NAAQS violations; and to
address visibility impacts in Class I areas.

The Interim Air Quality Policy on Wildland and
Prescribed Fires (EPA 1998) provides clear guidelines
for establishing the need for and content of smoke man-
agement programs and assigns accountability to State
and Tribal air quality managers for developing and
adopting regulations for a program. Measured PM10
NAAQS exceedances attributable to fires, including
some prescribed fires and wildland fires managed for
resource benefits, can be excluded from air quality data
sets used to determine attainment status for a State.
Special consideration will be given if the State or Tribal
air quality manager certifies in a letter to the adminis-
trator of EPA that at least a basic smoke management
program has been adopted and implemented.

States with smoke management programs that have
authorized a central agency or office to make burn/no-
burn decisions include Arizona, Colorado, Oregon,
Idaho/Montana, Washington, California, Nevada, New
Mexico, Florida, South Carolina, Utah, North Caro-
lina, and Wyoming (Battye and others 1999). In many
other States, the decision to burn rests in the hands of
the persons conducting the burn, local fire depart-
ments, or local authorities. These States include Alaska,
Alabama, Arkansas, Georgia, Louisiana, Mississippi,
Tennessee, Texas, and Virginia. In yet other States

(New York, Illinois, Massachusetts, and others), burn
permits are required and may be subject to State air
agency oversight if burning is conducted near
nonattainment areas or areas sensitive to smoke (Core
1998; Hardy and others 2001). In addition, many
private landowners, nonprofit conservation organiza-
tions and government agencies voluntarily practice
responsible smoke management to maintain goodwill
in their communities.

Smoke management programs have been estab-
lished and are operated on an on-going basis because
of local, regional, and national concerns about the
impact of prescribed burning on air quality. The num-
ber, complexity, and cost of operating these programs
underscore the potential significance of prescribed
fire’s impact on air quality on a national scale.

Smoke management programs across the nation
have changed significantly since the mid-1980s. In the
Pacific Northwest, there have been reductions in pre-
scribed fire smoke management programs because of
the decline in large-scale clearcut burning of forest
harvesting residues. Current smoke management pro-
grams across the West have to place a much greater
focus than in the past on understory burning to restore
declining forest health, on burns to reduce fire haz-
ards, or on burns to meet wildlife habitat objectives.
All across the nation, an increasing number of people
living within the wildland-urban interface have placed
new emphasis on the need to minimize smoke impacts
on residents living near fires. Increasing air quality
regulatory pressures, fire manager liability issues,
and the increased likelihood of fire escapement in
overstocked forestlands have all placed ever-greater
demands on fire practitioners.

As these demands have increased, so have the
number and complexity of smoke management pro-
grams nationwide (Hardy and others 2001). Although
the complexity of these programs varies widely from
State to State, the key to a successful program always
lies in its ability to balance the use of prescribed fire
with air quality, environmental, legal, and social
requirements. Increasingly, this has meant adoption
of formalized burn authorization procedures issued
by program managers who are responsible for over-
seeing burning on both public and private lands on a
daily basis. Coordinated burn operations are based
on meteorological forecasts, the location of smoke-
sensitive receptors, fuel conditions, and a myriad of
other considerations. Increasingly, public notifica-
tion of planned burning activity and monitoring of
smoke transport, as well as fire practitioner training
and program enforcement, are becoming more com-
mon (Battye and others 1999).

As inter-State smoke transport becomes a larger
issue, agencies are expanding coordination. For ex-
ample, land management agencies in California’s
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San Joaquin Valley are using a new centralized,
electronic database, Prescribed Fire Incident Report-
ing System (PFIRS), to schedule fires and to share
information on expected emissions and smoke trans-
port with California and Nevada air and land man-
agement agencies (Little n.d.). This trend is likely to
continue as States begin to work on regional haze
control programs.

The Western Regional Air Partnership (WRAP) Fire
Emissions Joint Forum (FEJF) has issued a draft
policy to set the criteria for enhanced smoke manage-
ment plans for visibility protection in the West (Fire
Emissions Joint Forum 2002). The policy document
concludes that the regional haze rule can be satisfied
only by the States and Tribes establishing an emission
tracking system for all prescribed fires and wildland
fires; by managing smoke from all fires; and by imple-
menting smoke management systems that include
nine elements:

1. Actions to minimize emissions from fire
2. Evaluation of smoke dispersion
3. Alternatives to fire
4. Public notification of burning
5. Air quality monitoring
6. Surveillance and enforcement
7. Program evaluation
8. Burn authorization
9. Regional coordination

The enhanced smoke management plan (ESMP)
policy would enable Western States and Tribes to
minimize increases in emissions and show reasonable
progress toward the natural visibility goal. The Fire
Emissions Joint Forum is developing additional policy
and technical tools that will support ESMP policy and
its implementation, such as recommendations for cre-
ation of an annual emissions goal, availability and
feasibility of alternatives to burning, recommenda-
tions for managing fire emissions sources, guidance
for feasibility determinations, and a method for track-
ing fire emissions.
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All fires emit air pollutants in addition to nonpollut-
ing combustion products; but fires vary widely in what
pollutants are emitted in what proportion. Character-
izing and managing air pollution from fires first re-
quires knowledge of the amount and timing of what
pollutants are emitted. Fires are a complex combus-
tion source that involve several stages of combustion,
several categories of fuels, and fire behavior that
changes over time and with fuel and weather condi-
tions; so the amount, rate, and nature of pollutants
also vary widely. Characterizing emissions from fires
requires explicit knowledge of fuelbed character and
condition, combustion environment, and fire behav-
ior.

This chapter reviews the state of knowledge and
predictive models necessary to characterize air pollut-
ant emissions from prescribed and wildland fires.

All components of smoke from fires, with the excep-
tion of carbon dioxide and water, are generated from
the inefficient combustion of biomass fuels. The amount
of smoke produced is derived by determining the fuel
consumed (tons per acre) in each combustion stage and
knowing the size of the area burned, fuel characteris-
tics, fire behavior, and combustion conditions (fuel
moisture, weather parameters, and so forth). The fuel

Chapter 4:
Characterization of
Emissions from Fires

consumption is then multiplied by an emissions factor
for each pollutant, which is an expression of the
efficiency of combustion. An emission factor is the
ratio of the mass of pollutant per unit mass of fuel
consumed, and is a statistical average of measure-
ments made in the plumes of fires containing differing
fuel types and combustion stages. Errors and uncer-
tainties arise in the estimates made during each step
in the process of estimating emissions.

Area Burned____________________
At first glance, amount of area burned seems rela-

tively easy to calculate. However, individual esti-
mates of fire size tend to be systematically exagger-
ated, and fires are frequently double-counted in
inventories. For example, geographic features, non-
uniform fuelbeds, or a change in the weather will often
cause a fire to create a mosaic of burned, partially
burned, and unburned areas, although the entire
landscape within the fire perimeter is often reported
as burned. In addition, large-scale (such as continen-
tal) inventories of area burned are often derived from
remote sensing data that have resolutions from 250 m
to 1 km (SAI 2002), limiting their precision. Remote
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sensing accuracy is currently inadequate in land-
scapes that change slope and fuel characteristics over
a few tens of meters.

Preburn Fuel Characteristics ______
Large variations in fuel characteristics can contrib-

ute up to 80 percent of the error associated with
predicting emissions (Peterson 1987; Peterson and
Sandberg 1988). Fuel characteristics can vary widely
across the landscape (figs. 4-1 and 4-2). For instance,
fuel loads can range from less than 3 tons per acre for
perennial grasses with no rotten woody material or
duff, 6 tons per acre in a sagebrush shrubland, 60 tons
per acre in a ponderosa pine and Douglas-fir forest
with rotten woody material, stumps, snags, and deep
duff, to 160 tons per acre in a black spruce forest with
deep moss and duff layer. The greatest errors occur
when the fuel load is inferred from vegetation type as

is usual when deriving biomass emissions from re-
motely sensed data (Crutzen and Andrae 1990; Levine
1994). Preburn fuel characteristics, such as relative
abundance for particular fuelbed components (grasses,
shrubs, woody fuels, litter, duff, and live vegetation)
and the condition of the fuel (live, dead, sound, rotten)
are needed to calculate fuel consumption, and the
resulting smoke.

The ongoing development of several techniques,
including the natural fuels photo series (Ottmar and
Vihnanek 2000a) and the fuel characteristic classifi-
cation (FCC) system (Sandberg and others 2001), will
provide managers new tools to better estimate fuel
loadings and reduce the uncertainty that currently
exists when assigning fuel characteristics across a
landscape. The photo series is a sequence of single and
stereo photographs with accompanying fuel charac-
teristics. The FCC is a national system designed for
classifying wildland fuelbeds according to a set of

Figure 4-1—Fuelbed types and fuel loads (a) grassland (3 tons per acre), (b) sagebrush (6 tons per acre), (c) ponderosa
pine with mortality in mixed fir (60 tons per acre), and (d) black spruce with deep duff and moss (160 tons per acre).
(Photos by Roger Ottmar)
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inherent physical properties, thereby providing the
best possible fuels estimates and probable fire param-
eters based on available site-specific and remotely
sensed information.

Fire Behavior ___________________
Fire behavior is the manner in which fire reacts to

the fuels available for burning (DeBano and others
1998) and is dependent upon the type, condition, and
arrangement of fuels, local weather conditions, topog-
raphy, and in the case of prescribed fire, ignition
pattern and rate (fig. 4-3). Important aspects of fire
behavior include:

• Fire intensity (rate of energy release per unit
area or unit length of fire perimeter, generally
during the flaming combustion period).

• Rate of spread (rate of advancement of flaming
front, length per unit time), crowning poten-
tial (involvement of tree and shrub foliage and
spread within the canopy), smoldering poten-
tial (smoldering combustion of fuels that have
been preheated or dried during the flaming
stage).

• Residual smoldering potential (propagation of
a smoldering combustion front within porous
fuels such as rotten logs or duff, independent
of preheating or drying).

• Residence time in the flaming, smoldering,
and residual stages of combustion.

These aspects influence combustion efficiency of con-
suming biomass, as well as the resulting pollutant
chemistry and emission factor (fig. 4-4).

The Emissions Production Model (EPM) (Sandberg
2000; Sandberg and Peterson 1984) and FARSITE
(Finney 1998) take into account fire behavior and
ignition pattern to estimate emission production rates.
Fire behavior during the flaming stage of combustion
in surface woody fuels and some shrub vegetation is
effectively predicted within models such as BEHAVE
(Andrews and Bevins 1999) and its spatial applica-
tion, FARSITE (Finney 1998). However, EPM and
other applications do not consider fire intensity or
other fire behavior attributes when estimating emis-
sions from flames, and that may result in a reasonable
approximation for criteria pollutants but also be a
limitation to the estimate of hazardous air pollutants
or trace gases. BURNUP (Albini and Reinhardt 1997),
FARSITE (Finney 1998), and EPM v2.0 (Sandberg
2002) attempt to model the extent and duration of
flaming and smoldering combustion in downed woody
fuels and duff. Current capability to model residual
combustion, combustion in rotten logs and duff, and
fire behavior in the foliage canopies of trees and some
shrubs remains inadequate to predict emission rates
with any reasonable degree of accuracy.

The Los Alamos and Lawrence Livermore national
laboratories offer an approach to predicting fire be-
havior, plume trajectory, and dispersion, by combin-
ing a fire physics model, FIRETEC, with a dynamic
atmosphere model, HIGRAD, to produce a highly
detailed numerical simulation of fire spread and atmo-
spheric turbulence (Bradley and others 2000). The
approach builds on prior experience in predicting the
dispersion of hazardous air pollutants from fires such
as burning oil fields or “nuclear winter” scenarios.
This modeling approach is limited to the propagating
front but is unique in its coupling of atmospheric and
fire physics.

Figure 4-2—Various fuelbeds across a single landscape.
(Photo by Roger Ottmar)

Figure 4-3—Fire behavior in the leaf layer of a longleaf pine
forest. (Photo by Roger Ottmar)
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Figure 4-4—Fuel consumption in (a) large rotten log during
a fall prescribed burn, (b) pile burning during a prescribed
burn, (c) litter and duff during a prescribed burn, (d) grass
during a wildfire, and (e) sagebrush during a prescribed fire.
(Photos by Roger Ottmar)

Combustion Stages _____________
At least three important stages of combustion exist

when fuel particles are consumed (Mobley 1976; NWCG
1985): flaming, smoldering, and residual (also known
as “glowing,” “residual smoldering,” or “residual com-
bustion”) (fig. 4-5). The efficiency of combustion is
distinct for each stage, resulting in a different set of
chemical compounds and thermal energy being re-
leased at different rates into the atmosphere. In the
flaming phase, combustion efficiency is relatively high
and usually tends to emit the least amount of pollutant
emissions compared with the mass of fuel consumed.

The predominant products of flaming combustion
are CO2 and water vapor. During the smoldering
phase, combustion efficiency is lower, resulting in
more particulate emissions generated than during the
flaming stage.

Smoldering combustion is more prevalent in certain
fuel types such as duff, organic soils, and rotten logs,
and often less prevalent in fuels with high surface to
volume ratios such as grasses, shrubs, and small
diameter woody fuels (Sandberg and Dost 1990).
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Figure 4-5—Flaming, smoldering, and residual combustion
stages during a fire. (Photo by Roger Ottmar)

The residual stage differs from the smoldering stage
in that the smoldering stage is a secondary process
that occurs in fuels preheated or dried by flaming
combustion, while residual is an independent process
of propagation in a fuelbed unaffected by the flaming
stage. This phase is characterized by little smoke and
is composed mostly of CO2 and carbon monoxide. All
combustion stages occur sequentially at a point, but
simultaneously on a landscape.

Fuel Consumption_______________
Fuel consumption is the amount of biomass con-

sumed during a fire and is another critical component
required to estimate emissions production from fire.
Biomass consumption varies widely among individual
fires depending on the fuelbed type, arrangement, and
condition, weather parameters, and the way the fire is
applied in the case of prescribed fire. As with fuel
characteristics, extreme variations can be associated
with fuel consumption resulting in an error contribu-
tion of 30 percent or more when emissions are esti-
mated (fig. 4-6) (Peterson 1987; Peterson and Sandberg
1988).

Biomass consumption of woody fuels, piled slash,
and duff in forested areas has become better under-
stood in recent years (Albini and Reinhardt 1997;
Brown and others 1991; Ottmar and others 1993;
Ottmar and others [N.d.]); Reinhardt and others 1997;
Sandberg 1980; Sandberg and Dost 1990). Consump-
tion of forested crowns and shrublands are the least
understood components of biomass consumption, and
research is currently under way (Ottmar and Sandberg
2000) to develop or modify existing consumption equa-
tions for these fuel components. Equations for predict-
ing biomass consumption in the flaming and smolder-
ing combustion stages are widely available in two
major software packages, Consume 2.1 (Ottmar and
others [N.d.]) and the First Order Fire Effects Model
(FOFEM 5.0) (Reinhardt and Keane 2000).

Figure 4-6—The largest errors are associated with fuel loading and fuel consumption
estimates when determining emission production and impacts from wildland fire (Peterson
and Sandberg 1988).



32 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 5. 2002

Emission Factors _______________
Emissions from fires or from points over fires have

been observed extensively by researchers since about
1970. The result is a complete set of emission factors
(pounds of pollutant per ton of fuel consumed) for
criteria pollutants and many hazardous air pollutants
for most important fuel types. These are available in
several publications (for example, Battye and Battye
2002, EPA 1972, Hardy and others 2001, Ward and
others 1989) and are not reproduced here.

Less complete compilations of emission factors are
for particulate matter components such as size class
distribution, elemental and organic carbon fractions,
and particulate hazardous air pollutants; and for
methane, ammonia, aldehydes, compounds of nitro-
gen, volatile organic hydrocarbons, and volatile haz-
ardous air pollutants (for example, Battye and Battye
2002, Goode and others 1999, Goode and others 2000,
Lobert and others 1991, McKenzie and others 1994,
and Yokelson and others 1996).

Source Strength ________________
Source strength is the rate of air pollutant emissions

in mass per unit of time, or in mass per unit of time per
unit of area. Source strength is the product of the rate
of biomass consumption (that is, fuel consumption)
and an emission factor for the pollutant(s) of interest
and is representative of the physical and chemical fuel
characteristics (fig. 4-7). Source strength or emission
rate is required as an input to dispersion models
(Breyfogle and Ferguson 1996), or to break down
emission inventories into time periods shorter than
the duration of a fire event. Source strength is also
required in photochemical models such as the commu-
nity multiscale air quality model (CMAQ) (Byun and
Ching 1999) to account for timing of chemical reac-
tions with diurnal patterns and interaction with other
sources.

Total emissions from a fire or class of fires are the
source strength integrated over the time of burning.
Total emissions from a single class of fires (that is, a
set of fires similar enough to be characterized by a
single emission factor) can be estimated by multiply-
ing that emission factor by the level of activity, which
is the total biomass consumed by the class of fires. An
emission inventory is the aggregate of total emissions
from all fires or classes of fire in a given period for a
specific geographic area.

Managing the source strength (or level of activity) of
fires is the most direct way to control air pollution from
wildland and prescribed fires. Prediction of source
strength is sometimes used to manage the rate of
emissions from fires, and it also is needed as an input
to dispersion models. Standards or regulations are

commonly set to limit the total emissions of pollutants,
emission of specific hazardous air pollutants, or the
level of activity, so that estimates of biomass consump-
tion can be essential for environmental assessment,
permitting of prescribed fires, or measuring compli-
ance. Emission inventories are a critical part of impact
analyses and strategy development so the level of
activity must be estimated whenever there is a regu-
latory application.

The Emissions Production Model (Sandberg 2000;
Sandberg and Peterson 1984) is currently the most
widely used model for predicting source strength for
prescribed fires. EPM v.1 predicts flaming and re-
sidual emissions rates for each criteria pollutant
based on a simple formula that assumes a constant
rate of ignition of a prescribed fire in uniform fuels.
The software package pulls fuel consumption predic-
tions from Consume 2.1 or FOFEM 5.0 and uses
ignition pattern, ignition periods, and burn area
components to calculate source strength for the flam-
ing and residual combustion phases. EPM v.1 does
not consider smoldering emissions (for example, long-
duration, self-propagating glowing combustion),
multiple fires or multiple burn periods, wildland fire
or piled burning emissions, or diurnal and spatial
changes in the fire environment. EPM v.2, now under
development (Sandberg 2000), corrects all of these
shortcomings in a dynamic simulation model. EPM v.2
will satisfy the requirement to provide hourly esti-
mates of emission rates for most fires and fuelbeds
needed for input into Models-3/CMAQ (see the “Grid
Models” section in chapter 5) and into currently
envisioned smoke management screening systems.

Figure 4-7—A high-intensity Alaska wildfire with heavy fuel
loads, causes a high rate of emissions. (Photo by Roger
Ottmar)
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FARSITE (Finney 2000) has been modified to pre-
dict emissions source strength as well as fire behavior
in a detailed spatial simulation. FARSITE incorpo-
rates BURNUP (Albini and Reinhardt 1997), which
estimates consumption and rates of individual fuel
elements.

Accurate characterization of emissions from fires is
critical to predicting the impact emissions will have

upon communities and across broader landscapes and
airsheds. Managers will increasingly be required to
provide this type of information prior to prescribed
burns, as well as during the course of wildland fires,
and the information provided here summarizes the
strengths and weaknesses of the various means of
prediction.
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Chapter 5: Transport,
Dispersion, and Modeling of
Fire Emissions

To anticipate the impacts of smoke, the timing and
location of smoke concentrations become important.
Data on the site-specific surface concentrations of
respirable particles and gases often are needed for
estimating impacts on public health and welfare, re-
quiring atmospheric dispersion and transport models
that can approximate the atmospheric physics and
chemical reactions that occur during transport near
the ground. Data on the cumulative concentrations of
elements that scatter and absorb light also are needed
to estimate impacts on visibility and haze, requiring
models that can approximate aqueous reactions as
well as physical and chemical reactions at all levels of
the atmosphere.

Although progress is being made, none of the cur-
rently available models fully meet the needs of fire
planners and air resource managers. Much of the
deficiency in current modeling approaches is caused
by inherent uncertainties associated with turbulent
motions between the fire, smoke, and the atmosphere
that are compounded by the highly variable distribu-
tion of fuel elements, composition, and condition.

Another source of deficiency is that most available
models were originally designed for well-behaved sources
such as industrial stacks or automobile emissions,

while emissions from fire can be extremely variable in
both time and space. Also, outputs from currently
available models do not always match the temporal or
spatial scale needed for land management application.

To help readers understand the strengths and weak-
nesses of available models, we describe basic elements
of the trajectory and dispersion of smoke. This chapter
concludes with a summary of currently available mod-
els and a brief guide to applications.

Basic Elements of Trajectory and
Dispersion _____________________

Ambient air quality can be measured at a point or as
distribution of air quality over any space and time of
interest. Ambient air quality is affected by the pollut-
ants emitted to the atmosphere from fires, the back-
ground air quality that has already been degraded by
other sources, the transport of the polluted parcels of
the atmosphere, dispersion due to atmospheric move-
ment and turbulence, secondary reactions, and re-
moval processes. Plume rise is an important component
of transport, because it determines where in the verti-
cal structure of the atmosphere dispersion will begin.
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Overall, dispersion has proven extremely difficult
to model accurately, especially in complex terrain.
For example, detailed, gridded, three-dimensional
meteorological data are required to model transport
and dispersion, but expert judgment is often re-
quired to supplement or substitute for such modeled
predictions.

Despite the difficulties of modeling, since about
1990 modeling systems used to assess the air quality
impact of fires have grown increasingly important to
both the fire planning and air quality communities.
There is a broad range of acceptable tools from rela-
tively simple methods used by local fire managers for
estimating likely impacts on air quality standards (for
example, SASEM: Riebau and others 1988; and
VSMOKE: Lavdas 1996), to complex terrain and re-
gional-scale models that incorporate atmospheric
chemistry to assess impacts on regional haze (for
example, Calpuff: Scire and others 2000a, and Models-
3: Byun and Ching 1999).

The tremendous growth in model application places
increasingly greater demands on the user, requiring
access to detailed fuel characteristics, fuel consump-
tion, ignition pattern, fire behavior, and meteorologi-
cal inputs. Also needed is the ability to interpret the
complex smoke dispersion model outputs.

In this section we describe such processes of heat
release, plume rise and buoyancy, advection and diffu-
sion, scavenging, and chemical transformations.

Heat Release

The consumption of biomass produces thermal en-
ergy, and this energy creates buoyancy to lift smoke
particles and other pollutants above the fire. Heat
release rate is the amount of thermal energy gener-
ated per unit of time. Total heat release from a fire or
class of fires is a function of the heat content of the
biomass, fuel consumed, ignition method and pattern,
and area burned.

The early work of Anderson (1969) and Rothermel
(1972) created fundamental equations for combustion
energy in a variety of fuelbeds. Sandberg and Peterson
(1984) adapted the combustion equations to model the
temporal change in energy during flaming and smol-
dering combustion (Emission Production Model,
EPMv.1.02). Currently, EPM provides heat release
rates for most biomass smoke dispersion models
(Harms and others 1997; Harrison 1995; Lavdas 1996;
Sestak and Riebau 1988; Scire and others 2000a) and
has been used to estimate the change in global biomass
emissions patterns due to changes in land use
(Ferguson and others 2000). The model, however,
requires a constant rate of ignition with constant slope
and wind. Such homogeneous conditions may be ap-
proximated during prescribed fires that are ignited
with a deliberate pattern of drip torches or airborne

incendiaries, or during portions of wildfires that expe-
rience relatively constant spread rates, both over
fuelbed strata that retain a relatively consistent spa-
tial and compositional pattern. To use EPM effectively
for modeling source strength, the fire area and ignition
duration are broken into space and time segments that
meet the steady-state criteria.

Albini and others (1995), Albini and Reinhardt (1995),
and Albini and Reinhardt (1997) do not explicitly
derive temporal changes in combustion energy in their
model, BurnUp, but they do assign source heat in
steps of flaming and smoldering that are estimated
from total fuel consumption. They have linked their
model with the fire spread model, FARSITE (Finney
1998), which allows ignition rates and subsequent
heat-release rates to vary over the landscape. The
coupled system is computationally expensive and not
yet associated with a plume rise component but may
offer a reasonable approximation of the temporal and
spatial varying emission rates of fires.

Plume Rise and Buoyancy

Heat, particle, and gas emissions from fires vary in
time and space, causing unique patterns of convection
and resulting plume rise. This plume rise is a function
of free convection in the atmosphere, which is caused
by density differences within the fluid. As a fire heats
and expands air near the ground, large density differ-
ences between the heated volume and the surrounding
air mass are created, causing the heated parcel to rise.
The potential height of the resulting plume depends
on the heat energy of the source and rise velocity,
which is affected by the exchange and conservation of
mass, radiant heat loss, the buoyancy force, and tur-
bulent mixing with the ambient air.

Hot, flaming fires can develop central convective
columns with counter-rotating vortices that involve
massive entrainment of the surrounding air mass
(Clark and others 1996; Haines and Smith 1987;
Haines and Updike 1971). This stage of fire can pro-
duce fast-rising plumes and turbulent downdrafts,
carrying sparks that ignite new fires. Cumulonimbus
clouds often develop with accompanying lightning and
rain. Dynamic plume rise brings gas and particles
high into the atmosphere where strong winds can
disperse the smoke hundreds to thousands of kilome-
ters. As high intensity fires cool, however, the central
column often collapses, creating numerous small con-
vective cells that are less dynamic but equally active in
carrying smoke into the atmosphere. Smoldering fires
often create plumes that are neutrally buoyant, limit-
ing widespread dispersion but allowing surface winds
to dominate smoke trajectories. This can lead to accu-
mulations of smoke in valleys and basins at night.

Because plume rise can eventually result in wide-
spread dispersion, plume rise calculations are essential
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for determining the height above ground from which
plume dispersion is initiated. Uncertainties in such
calculations can result in inaccurate predictions of
plume transport and downwind smoke impacts. Given
the pressing need to predict the impact of plumes from
fires, the need for improved plume rise calculations is
apparent.

The basic mechanisms and algorithms used to de-
scribe plume rise and buoyancy were developed in the
mid-1960s by Briggs (1969) for industrial, ducted
emissions. These methods are still used today to esti-
mate the plume rise and buoyancy of fires in spite of
the significant differences in characteristics between
ducted emissions and prescribed and wildland fires:

• Heat released from ducted sources is precisely
known and usually emitted at relatively con-
stant rates during a single phase of combus-
tion. Heat released from fires is a function of
fuel loading, fuel conditions, and ignition
method through several phases of combustion
(pre-ignition, flaming, smoldering, and re-
sidual), which create highly variable magni-
tudes and rates of heat release.

• Nearly all of the energy generated at the
source of a ducted plume is transmitted to
convection energy. In open burning, however,
significant amounts of energy are lost by con-
duction and radiation, reducing the amount of
available energy for convection.

• Plumes from ducted sources create single con-
vective columns, but low intensity understory
burning that occurs over broad areas does not
develop a cohesive plume.

To improve plume rise predictions, emission produc-
tion models need to do a better job of characterizing the
spatial and temporal pattern of heat release from
fires, and plume rise models need to be improved to
account for the energy lost from the convective system
through radiation and turbulent mixing. While mod-
els such as EPM and Burnup described in the previous
section simulate variable rates of heat release from
fires, both models use general estimates of spatial
distributions of fuel, including structure, composition,
and moisture content. Also, significant elements of
fires that influence convective energy — such as the
distribution of naturally piled fuel (“jackpots”), amount
and density of rotten fuel and duff, and release of
water vapor — are not adequately captured.

Rough approximations on the proportion of energy
available for convection were made more than 40 years
ago (Brown and Davis 1959). Despite efforts to improve
plume rise calculations by removing the density dif-
ference assumption (Scire and others 2000a), they
still are in use today.

Low intensity fires that typically do not have a
cohesive convective column must be treated, from a
modeling perspective, as an area source in Eulerian
grid models. In Lagrangian dispersion models, there is
currently no valid means of calculating plume rise
from unconsolidated convection. Eulerian coordinates
(used by box and grid models) are coordinate systems
that are fixed in space and time, and there is no
attempt to identify individual particles or parcels from
one time to the next. Lagrangian models (bell-shape or
Gaussian distribution pattern, often applied to plume
and puff models) are used to show concentrations
crosswind of the plume.

Another complication for modeling is that once
plumes from fires enter the atmosphere, their fluctu-
ating convection dynamics make them more suscep-
tible to erratic behavior than well-mannered indus-
trial stacks. For example, different parts of a plume
can be carried to different heights in the atmosphere
at the same time. This causes unusual splitting pat-
terns if there is a notable wind shear between lofted
elevations, causing different portions of the plume to
be transported in different directions. Therefore, pre-
dictions of the plume’s impact on visibility and air
quality under these conditions become highly uncer-
tain (Walcek 2002). Even when the behavior of plumes
from fires resembles that of stack plumes, the varying
and widely distributed locations of wildland sources
prevent consistent study. For example, down-wash of
plumes has been observed from ducted (stack) emis-
sions after an inversion breaks up — conditions that
are common at the end of an onshore breeze if the
plume is above the inversion at its source (de Nevers
2000; Venkatram 1988) or if horizontal stratification
in the lower atmosphere is disrupted by mountains (de
Nevers 2000).

These characteristics of plumes from fire are strik-
ingly different than those of ducted industrial emis-
sions yet little research has been done on this topic in
the past several decades.

Advection and Diffusion

In most existing models, the horizontal advection
of smoke and its diffusion (lateral and vertical spread)
are assumed to be controlled mainly by wind, and the
formation and dissipation of atmospheric eddies.
These elements are greatly simplified by assuming
constant wind (at least for an hourly time step) in
some cases (such as VSMOKE and SASEM), and a
Gaussian dispersion is nearly always imposed. Per-
haps the most critical issues are the constantly chang-
ing nature of the plume due to scavenging, chemical
transformation, and changing convection dynamics
that affect plume transport.

Many photochemical and dispersion models de-
pend on gridded meteorological inputs. Unfortunately,



38 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 5. 2002

numerical formulations of dynamic meteorological
models (for example, MM5: Grell and others 1995;
RAMS: Pielke and others 1992) do not adequately
conserve several important scalar quantities (Byun
1999a,1999b). Therefore, modelers often introduce
mass-conserving interpolations. For example, Mod-
els-3/CMAQ (Byun and Ching 1999) uses the MCIP
scheme (Byun and others 1999), Calpuff (Scire and
others 2000a) employs CALMET (Scire and others
2000b), and TSARS+ (Hummel and Rafsnider 1995)
is linked with NUATMOS (Ross and others 1988).
Driving a photochemical or dispersion model without
these mass-conserving schemes will produce inaccu-
rate results, especially near the ground surface.

Scavenging

Smoke particles by nature of their small size provide
efficient cloud condensation nuclei. This allows cloud
droplets to condense around fine particles, called nucle-
ation scavenging. Scavenging within a cloud also can
occur as particles impinge on cloud droplets through
Brownian diffusion, inertial impaction, or collision by
electrical, thermal, or pressure-gradient forces
(Jennings 1998). Cloud droplets eventually coalesce
into sizes large enough to precipitate out, thus re-
moving smoke aerosols from the atmosphere. While
interstitial cloud scavenging, especially nucleation
scavenging, is thought to dominate the pollution
removal process, particles also may be removed by
impacting raindrops below a cloud. Jennings (1998)
reviews several theories on pollution scavenging but
contends that there is little experimental evidence to
support such theories.

The size and chemical structure of particles deter-
mine their efficiency in nucleation or other scavenging
mechanisms. While the chemical composition of smoke
is reasonably well known (see chapter 6), distributions
of particle size from fire are not. The few airborne
measurements (Hobbs and others 1996; Martins and
others 1996; Radke and others 1990) do not distin-
guish fire characteristics or combustion dynamics,
which play important roles in the range of particle
sizes emitted from a fire. Therefore, the efficiency of
scavenging biomass smoke particles out of the atmo-
sphere by cloud droplets, rain, or other mechanism has
not been quantified.

Chemical Transformations

Chemical transformations provide another mecha-
nism for changing particle and gas concentrations within
a plume. Chemical transformation in the plume can be
important in regional-scale modeling programs where
sulfate chemistry and ozone formation are of interest
(see chapter 6). Oxidation within the smoke plume
causes a loss of electrons during chemical transforma-

tion processes, which increases polarity of a molecule
and improves its water solubility (Schroeder and Lane
1988). This improves scavenging mechanisms by cloud
and rain droplets. Chemical transformation rates de-
pend on complex interactions between catalysts and
environmental conditions such as turbulent mixing rates.

Transport and Dispersion
Models ________________________

Trajectories show the path of air parcels along a
streamline in the atmosphere. Their simplicity allows
trajectory methods to be used as a diagnostic tool for
identifying the origin of air parcels from a potential
receptor. This commonly is called a backward trajec-
tory or back trajectory analysis. Because these models
integrate over time the position of a parcel of air that
is transported by wind, their accuracy is limited by the
grid resolution of the model. Also, the flow path of a
single parcel may have little relation to an actual
plume dispersion pattern.

Current models to predict trajectory or air quality
impacts from fires are inadequate in coverage and are
incomplete in scope (Sandberg and others 1999). But
because of new interest in modeling emissions on a
regional scale, land managers need transport and
dispersion models that include all fire and fuel types
as well as multiple sources. Such models need to be
linked to other systems that track fire activity and
behavior as well as provide for variable scaling to fit
the area of interest. At the operational level, models
that support real-time decisionmaking during fire
operations in both wildland fire situation analysis and
go/no-go decision making are also needed (Breyfogle
and Ferguson 1996). Transport and dispersion models
fall into four major categories. These categories in-
clude plume, puff, particle, and grid.

Plume Models

One of the simplest ways of estimating smoke con-
centrations is to assume that plumes diffuse in a
Gaussian pattern along the centerline of a steady wind
trajectory. Plume models usually assume steady-state
conditions during the life of the plume, which means
relatively constant emission rates, wind speed, and
wind direction. For this reason, they can be used only
to estimate concentrations relatively near the source
or for a short duration. Their steady-state approxima-
tion also restricts plume models to conditions that do
not include the influence of topography or significant
changes in land use, such as flow from a forest to
grassland or across a land-water boundary.

Gaussian plume models have a great benefit in places
and circumstances that restrict the amount of available
input data. They can be run fast and have simple but
realistic output that can be easily interpreted. Many
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regulatory guidelines from the EPA are based on
Gaussian plume models.

Plume models typically are in Lagrangian coordi-
nates that follow particles or parcels as they move,
assigning the positions in space of a particle or parcel
at some arbitrarily selected moment. (Lagrangian
coordinates are used by plume, puff, and particle
models.) Examples adapted for wildland biomass smoke
include VSMOKE (Harms and others 1997; Lavdas
1996) and SASEM (Riebau and others 1988; Sestak
and Riebau 1988). Both models follow regulatory guide-
lines in their development and offer a simple screening
tool for examining potential concentrations at recep-
tor locations from straight-line trajectories relatively
near the source. However, SASEM directly compares
downwind concentrations with ambient standards and
calculates visibility impairment in a simple manner.
It is also used as a State regulatory model in Wyoming,
Colorado, New Mexico, and Arizona, and has been
recommended for use by the EPA.

Plume rise models developed for other applications
might be useful if adapted to fire environments. For
example, ALOFT-FT (A Large Outdoor Fire Plume
Trajectory Model - Flat Terrain), developed for oil-spill
fires (Walton and others 1996), is a computer-based
model to predict the downwind distribution of smoke
particulate and combustion products from large out-
door fires. It solves the fundamental fluid dynamic
equations for the smoke plume and its surroundings
with flat terrain. The program contains a graphical
user interface for input and output, and a database of
fuel and smoke emission parameters that can be
modified by the user. The output can be displayed as
downwind, crosswind, and vertical smoke concentra-
tion contours.

Puff Models

Instead of describing smoke concentrations as a
steadily growing plume, puff models characterize
the source as individual puffs being released over
time. Each puff expands in space in response to the
turbulent atmosphere, which usually is approxi-
mated as a Gaussian dispersion pattern. Puffs move
through the atmosphere according to the trajectory
of their center position. Because puffs grow and
move independently of each other, tortuous plume
patterns in response to changing winds, varying
topography, or alternating source strengths can be
simulated with some accuracy.

Some models allow puffs to expand, split, compact,
and coalesce (Hysplit: Draxler and Hess 1998; Calpuff:
Scire and others 2000a) while others retain coherent
puffs with constantly expanding volumes (NFSpuff:
Harrison 1995). In either case, the variability of puff
generation, movement, and dispersion does not re-
strict the time or distance with which a plume can be

modeled. Most puff models are computed in Lagrangian
coordinates that allow accurate location of specific
concentrations at any time.

Particle Models

In a particle model, the source is simulated by the
release of many particles over the duration of the burn.
The trajectory of each particle is determined as well as
a random component that mimics the effect of atmo-
spheric turbulence. This allows a cluster of particles to
expand in space according to the patterns of atmo-
spheric turbulence rather than following a parameter-
ized spatial distribution pattern, such as common
Gaussian approximations. Therefore, particle models
tend to be the most accurate way of simulating concen-
trations at any point in time. Because of their numeri-
cal complexity, however, particle models usually are
restricted to modeling individual point sources with
simple chemistry or sources that have critical compo-
nents such as toxins that must be tracked precisely.
Particle models use Lagrangian coordinates for accu-
rate depiction of place of each time of particle move-
ment (for example, Hysplit: Draxler and Hess 1998;
PB-Piedmont: Achtemeier 1994, 2000).

Grid Models

Grid models use Eulerian coordinates, disperse pol-
lutants uniformly within a cell, and transport them to
adjacent cells. The simplicity of advection and diffu-
sion in a grid model allows these models to more
accurately simulate other characteristics of the pollu-
tion, such as complex chemical or thermal interac-
tions, and to be used over large domains with multiple
sources. This is why grid models commonly are used
for estimating regional haze and ozone and are often
called Eulerian photochemical models. Much of the
future work on fire impact assessment and planning at
regional to national scales will be done by using grid
models.

Because of their nature, grid models are not used to
define accurate timing or locations of pollutant con-
centrations from individual plumes, only concentra-
tions that fill each cell. This means that sources
small relative to the grid size, which create individual
plumes, will introduce unrealistic concentrations in
places that are outside of the actual plume. Ways of
approximating plume position and its related chemi-
cal stage include nesting grids to finer and finer
spatial resolutions around sources of interest (Chang
and others 1993; Odman and Russell 1991), estab-
lishing nonuniform grids (Mathur and others 1992),
and creating “plume-in-grid” approximations (Byun
and Ching 1999; Kumar and Russell 1996; Morris
and others 1992; Myer and others 1996; Seigneur and
others 1983).
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Many regional haze assessments use the Regulatory
Modeling System for Aerosols and Acid Deposition
(REMSAD) (Systems Applications International 2002).
This model was adapted from the urban airshed model–
variable grid (UAMV) by removing its plume-in-grid
feature and parameterizing explicit chemistry to im-
prove computational efficiency. REMSAD incorporates
both atmospheric chemistry and deposition processes
to simulate sulfate, nitrate, and organic carbon par-
ticle formation and scavenging. As such, it is quite
useful for simulations over large regions.

The Models-3/ CMAQ modeling system is designed
to integrate the best available modules for simulating
the evolution and dispersion of multiple pollutants at
a variety of scales (Byun and Ching 1999). It includes
chemical transformations of ozone and ozone precur-
sors, transport and concentrations of fine particles
and toxics, acid deposition, and visibility degradation.

At the other end of the grid modeling spectra are
simple box models that describe pollution characteris-
tics of a small area of interest. Box models instanta-
neously mix pollutants within a confined area, such as
a valley. This type of model usually is restricted to
weather conditions that include low wind speeds and
a strong temperature inversion that confines the mix-
ing height to within valley walls (Lavdas 1982; Sestak
and others 1988). The valley walls, valley bottom, and
top of the inversion layer define the box edges. The end
segments of each box typically coincide with terrain
features of the valley, such as a turn or sudden eleva-
tion change. Flow is assumed to be down-valley, and
smoke is assumed to instantaneously fill each box
segment. Few box models include the complex chemi-
cal or particle interactions that are inherent in larger
grid models.

Model Application _______________
Modeling of the transport and dispersion of indus-

trial stack plumes has occurred for decades, prompt-
ing a variety of techniques. But application to fires is
much more limited (Breyfogle and Ferguson 1996).
Part of the reason for this is that source strength from
undulating and meandering fires is so difficult to
simulate accurately. Therefore, applications have been
appropriate mainly for relatively homogeneous
fuelbeds and steady state burn conditions. This has
restricted most transport and dispersion modeling to
fires on a local scale and to those started in harvest
residue from land clearing operations where fuels are
scattered uniformly over the landscape or collected
into piles (Hardy and others 1993; Hummel and
Rafsnider 1995; Lavdas 1996; Sestak and Riebau
1988). Global-scale modeling also has taken place
where fuelbed and ignition patterns are assumed to be

approximately steady state in relation to the grid size
(Kasischke and Stocks 2000; Levin 1996).

Gaussian plume models (Harms and others 1997;
Lavdas 1996; Sestak and Riebau 1988; Southern For-
est Fire Laboratory Personnel 1976) are useful for
places with relatively flat terrain, for circumstances
when input data are scarce, and for evaluating surface
concentrations relatively near the source. These mod-
els typically require only an estimate of atmospheric
stability, trajectory wind speed and direction, and
emission rates. Fires are modeled independently.
Therefore, accumulations of smoke from multiple fires
are ignored. Some Western States require SASEM
modeling of prescribed burns before they can be per-
mitted (Battye and Battye 2002).

Puff models (Draxler and Hess 1998; Harrison 1995;
Hummel and Rafsnider 1995; Scire and others 2000a)
are needed when simulating long-range transport, or
transport that occurs during changeable environmen-
tal conditions such as influences from complex terrain
or variable weather. NFSpuff has an easy user inter-
face, but because of its internal terrain data files it is
restricted to applications in the Western States, ex-
cluding Alaska (Harrison 1995). Hysplit (Draxler and
Hess 1998) currently is programmed to accept only 16
individual sources and assumes a constant rate of
emissions with no plume rise. Hysplit (Draxler and
Hess 1998) and Calpuff (Scire and others 2000a) both
include simple chemistry. NFSpuff is the most com-
monly used puff model for prescribed fire planning
(Dull and others 1998). All three models are linked to
the MM5 meteorological model (Grell and others 1995).
NFSpuff can function with a simple trajectory wind,
and Hysplit and Calpuff can accept other gridded
weather input data.

Particle models are used in coupled fire-atmosphere
modeling (Reisner and others 2000) and for tracking
critical signature elements (Achtemeier 1994, 2000;
Draxler and Hess 1998). The sophistication of these
types of models and their computational requirements,
however, has thus far limited their application to
research development or individual case studies.

Eulerian photochemical grid models are highly use-
ful in estimating smoke concentrations from many
sources over large domains. In addition, their ability
to model secondary chemical reactions and transfor-
mations is needed for determining ozone concentra-
tions and regional haze conditions. Regional planning
organizations such as the Western Regional Air Part-
nership (WRAP), are evaluating the photochemical
models Models-3/CMAQ (Byun and Ching 1999) and
REMSAD (Systems Applications International 2002)
for use in guiding State implementation plans (SIPs)
and Tribal implementation plans (TIPs).

Additional work is needed to fill critical gaps in the
modeling systems identified above. As the need for
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Traditionally, ozone and secondary aerosol precur-
sors have been discussed within the context of urban
smog caused by auto exhaust and reactive organic
compounds emitted from industrial facilities. But the
same pollutant and tropospheric chemical reactions
occur in both urban settings and in rural areas where
wildfire smoke may be an important if not dominant
source of ozone precursor emissions. In these situa-
tions, emissions from fire may play an important role
in ozone formation as well as nitrate and, indirectly,
sulfate aerosol formation, which results in visibility
impairment and increased PM2.5 concentrations.

At present, there is an urgent need to understand
the impact of fire emissions on emerging visibility and
ambient air standards as they relate to fire planning
at the strategic, programmatic, and operational scales
(Fox and Riebau 2000; Sandberg and others 1999).
Chemical processes that occur in plumes from fires,
directly or indirectly, touch on a number of these
issues and are critical to the development of a regional
model that will be used to assess the impact of fire on
air quality.

Because of the Environmental Protection Agency’s
(EPA) pressing regulatory need to assess inter-State
ozone transport and sources of precursor emissions, a
new regional-scale mechanistic model called Models-
3/CMAQ (Byun and Ching 1999) is being used by the
Ozone Transport Commission (OTC) region of North-

Chapter 6: Atmospheric and
Plume Chemistry

eastern and Mid-Western States, and the Western
Regional Air Partnership (WRAP). Future applica-
tions will likely involve regional haze modeling in
other areas of the country. Oxides of nitrogen (NOX)
and volatile organic compounds (VOCs) emissions
from fire in the OTC have not previously been consid-
ered significant, but the new model photochemistry
module requires that precursor emissions be included
for all sources. As Models-3/CMAQ develops, NOX and
VOC emissions from fire will be included in ozone and
secondary modeling.

Ozone Formation in Plumes_______
Field observations of ozone formation in smoke

plumes from fires date back nearly 25 years when
aircraft measurements detected elevated ozone at the
edge of forest fire smoke plumes far downwind (Stith
and others 1981). More recent observations (Wotawa
and Trainer 2000) suggest that high concentrations of
ozone are found in forest fire plumes that are trans-
ported great distances and across international bound-
aries. Measurements made during EPA’s 1995 South-
ern Oxidant Study indicate that Canadian forest fires
changed the photochemical properties of air masses
over Tennessee on days with strong fire influence.
Regional background ozone levels were elevated by 10
to 20 ppb on fire impact days as compared with
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nonimpact days during the study. Aircraft measure-
ments found that, although forest fire plumes were
always well defined with respect to carbon monoxide,
they gradually lost their definition with respect to
ozone after being mixed into the boundary layer. The
amount of ozone transported to the surface measure-
ment sites was found to depend upon where and when
the plumes reached the ground. Elevated plumes were
always marked by enhanced ozone concentrations, at
times reaching values of 80 to 100 parts per billion
(ppb) above tropospheric background.

Stith and others (1981) mapped ozone mixing ratios
in an isolated, fresh, biomass-burning plume. At the
source, or near the bottom, of the horizontally drifting
plume they measured low or negative changes in ozone
values, which they attributed to titration by NO and
low ultraviolet (UV) intensity. Near the top of the
plume, 10 km downwind, and in smoke less than 1
hour old, they measured change in ozone values as
high as 44 parts per billion by volume (ppbv). Greater
changes in ozone were positively correlated with high
UV. Thus the initial destruction of ozone by reactive
species in the plume followed by its gradual formation
was documented.

A new and potentially useful tool for assessing
impacts of long-range plume transport is based on the
concept of using ∆O3/∆CO (excess O3 over excess CO)
as a “photochemical clock” to denote the degree of
photochemical processing in a polluted air mass by
using carbon monoxide as a stable plume signature.
As the plume disperses, its volume expands and abso-
lute values of ozone can drop even though net produc-
tion of ozone is still occurring. The ∆O3/∆CO normal-
izes for plume expansion and is a useful measure of net
ozone production. In the course of atmospheric chem-
istry research, numerous observations of ∆O3/∆CO
ratios have been made in biomass burning haze layers.
Unfortunately, the observations represent haze of
various ages and uncertain origin. In haze layers 1 to
2 days old, changes in the ∆O3/∆CO ratios of 0.04 to
0.18 were measured over Alaska (Wofsy and others
1992) and ratios of 0.1 to 0.2 were measured over
Eastern Canada (Mauzerall and others 1996). High
ratios, up to 0.88, were measured at the top of haze
layers that had aged about 10 days in the tropics
(Andreae and others 1994).

In 1997, airborne Fourier transform infrared spectro-
scopy (FTIR) measurements in large isolated biomass
burning plumes in Alaska revealed new details of
downwind chemistry. Downwind smoke samples that
had aged in the upper part of one plume for 2.2 ± 1
hours had ∆O3/∆CO ratios of 7.9 ± 2.4 percent, result-
ing from initial, absolute ozone formation rates of about
50 ppb/hr. Downwind samples obtained well inside
another plume, and of similar age, did not have detect-
able ∆O3, but did have ∆NH3/∆CO ratios about one-
third of the initial value. ∆HCOOH/∆CO (formic acid)

and ∆CH3COOH/∆CO (acetic acid) usually increased
about a factor of 2 over the same time scale in samples
from both plumes. NOX was below the detection limit
in all the downwind samples. These data provided the
first precise in-plume measurements of the rate of
O3/CO increase and suggested that this rate depended
on relative position in the plume. The apparently
rapid disappearance of NOX is consistent with the
similar early observation, and the drop in NH3 was
consistent with a reaction with HNO3 to form ammo-
nium nitrate, which is a NOX sink. Secondary sources
of formic acid relevant to polluted air have been
described (Finlayson-Pitts and Pitts 1986). Jacob and
others (1992, 1996) discussed several gas-phase sources
of acetic acid that could occur in biomass burning
plumes. These experiments provide the first experi-
mental indication of the approximate time scale of
secondary organic acid production in actual plumes.

A large number of photochemical modeling studies
of biomass burning plumes have been published
(Chatfield and Delaney 1990; Chatfield and others
1996; Crutzen and Carmichael 1993; Fishman and
others 1991; Jacob and others 1992, 1996; Koppmann
and others 1997; Lee and others 1998; Lelieveld and
others 1997; Mauzerall and others 1998; Olson and
others 1997; Richardson and others 1991; Thompson
and others 1996). Nearly all these studies conclude
that the net production of ozone occurs either in the
original plume, or as a result of the plume mixing with
the regional atmosphere. Several studies have shown
a strong dependence of the final modeled results on the
details of the post-emission-processing scenario such
as the timing between production of the emissions and
their convection to the free troposphere (Chatfield and
Delaney 1990; Jacob and others 1996; Lelieveld and
others 1997; Pickering and others 1992; Thompson
and others 1996).

Factors Affecting Plume
Chemistry______________________

The specific chemical composition of the plume de-
pends on many factors: the details of post-emission
atmospheric reactions including dilution rates, pho-
tolysis rates, position within the plume, altitude, and
smoke temperature, which varies by time of day and
combustion stage. Equally important is the chemistry
of the downwind air that mixes with the plume, which
could be clean air or contain aged plumes from urban
areas or other fires. In addition, the physical aspects of
the plume mixing are important. For example, at the
relatively low temperatures typical of higher altitudes
in the troposphere, peroxyacetyl nitrate (PAN) is a
stable molecule, which can be transported. At lower
altitudes, PAN can thermally decompose and rerelease
NOX. Nitric acid (HNO3) can also be an important,
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transportable reservoir species for NOX at high alti-
tudes but for a different reason. HNO3 has a narrower
absorption cross-section at lower temperatures and
therefore is less susceptible to photolysis. The rate of
bimolecular reactions among smoke components usu-
ally decreases with temperature (thus typically with
altitude or at night). Reaction rates depend even more
strongly on the dilution rate, at least initially. Dilution
by a factor of 2 will decrease a bimolecular reaction
rate by a factor of 4.

Emission Factors for Reactive
Species________________________

Emission factors for hydrogen oxide (HOX, a collec-
tive term for OH and HO2) precursors, NH3, and NOX
have been estimated with the Missoula, MT, open-path
spectroscopic system (Yokelson and others 1997). These
experiments reveal that smoke contains high levels of
oxygenated organic compounds, methanol (CH3OH),
acetic acid (CH3COOH), and formaldehyde (HCHO).
These compounds typically oxidize or photolyze within
hours in a smoke plume to release HOX that is impor-
tant in sulfate aerosol formation processes. Under
clear-sky conditions typical for noon on July 1 at 40°N
latitude, the formaldehyde photolysis lifetime is about
3.8 hours (Yokelson and others 1997). Since the
HCHO/CO source ratio for fires is typically near 2
percent, this process clearly injects large quantities of
HO2 into fresh plumes (Yokelson and others 1997).
HOX emissions from fire may become a critical input to
regional haze models that simulate secondary sulfate
formation processes.

The H2O2 is soluble in cloud droplets where it would
play a major role influencing reaction rates during
aqueous-phase sulfate formation chemistry (NRC
1993).

Particle Formation in Plumes______
A number of processes are important in plume par-

ticle formation and growth. Many of these processes
involve interaction with the trace gases in a plume
originating from nucleation in which two gases react
to form a solid nucleus for subsequent particle growth.
An example of nucleation is the reaction of ammonia
and nitric acid. In addition, condensation can create
new particles when gases cool or through particle
growth when a trace gas collides with and condenses
on an existing particle. The second condensation pro-
cess is quite common because biomass burning aerosol
is hydrated. Soluble nucleilike ammonium nitrate

promotes this process. There is a little evidence that
organic gases also condense on particles. Nucleation
and condensation are both examples of trace-gas-to-
particle conversion, which will increase the mass of
particles in a plume, decrease the concentration of
certain trace gases in the plume, and, in the case of
condensation, contribute to an increase in average
particle diameter. Andreae and others (1988) mea-
sured particle-NH4

+/CO2 ratios of 0.7 to 1.5 percent in
slightly aged biomass burning plumes. Measurements
of NH3/CO in fresh smoke are typically near 2 percent.
Thus, there is probably rapid conversion of gas-phase
NH3 to particle NH4

+ either through nucleation or
dissolution in the surface water of other hydrated
particles.

Coagulation is when two particles collide and com-
bine. This increases the average particle diameter,
reduces particle number, and does not effect total
particle mass. Coagulation probably contributes to the
increase in average particle diameter that occurs down-
wind from fires (Reid and others 1998).

At any given point in its evolution a particle may
impact the trace gas chemistry in a smoke plume. For
instance, it is known that NO2 reacts on the surface of
soot particles to yield gas phase HONO. This and other
heterogeneous reactions such as ozone destruction
may occur on smoke aerosol. Some recent research
suggests that oxygenated organic compounds emitted
from fires could also be important in heterogeneous
processes. Hobbs and Radke (1969), Desalmand and
others (1985), Andreae and others (1988), and Roger
and others (1991) found that a high percentage (25 to
100 percent) of fire aerosol particles from fires could be
active as condensation nuclei (CCN). Radke and oth-
ers (1990) observed that cumulus clouds greater than
2 km in depth scavenged 40 to 80 percent of smoke
particles. The high concentrations of CCN in smoke
plumes can contribute to the formation of clouds with
smaller than “normal” cloud droplet size distributions.
This type of cloud is more reflective to incoming solar
radiation and less likely to form precipitation. Some
work suggests that absorbing aerosol can reduce cloud
formation. Finally, clouds can evaporate and leave
behind chemically altered particles.

All of these mechanisms alter both the chemical
nature and number of particles contained within smoke
plumes from fires. In addition, reactive species emit-
ted from fires (see previous section) may alter the
conversion rate of gaseous precursors of secondary
sulfate and nitrate particles, affecting regional haze
modeling results.

Although the regulatory implications of reactive spe-
cies emissions from fire are yet to be determined, much
more attention to these issues will occur once fire is
including in regional haze and ozone modeling efforts.
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Chapter 7: Estimating the Air
Quality Impacts of Fire

State-of-the-science methods used to determine the
impact of fire on air quality and visibility include: (1)
emission inventories; (2) air quality monitoring in-
struments to measure smoke concentrations in real-
time; and (3) filter-based monitoring techniques and
receptor-oriented methods that quantify wildfire smoke
contribution to air pollution based on the chemical
characteristics of smoke particles or the spatial and/or
temporal variability. Fire also contributes to ground-
level ozone. These topics have become increasingly
important to both air quality regulators and land
managers as efforts to identify, or apportion, the
contributions that fire makes to particulate air pollu-
tion, regional haze, and ground-level ozone come un-
der increased scrutiny.

Because the health effects of air pollution are so
difficult to measure in the broad population, there has
been little effort to regulate or manage those effects
directly. Many smoke management decisions are made
on the basis of nuisance complaints as an indicator,
rather than on quantitative measurements of impacts
to health and welfare. Close to the source, efforts are
being made to keep the exposure of firefighters to
hazardous air pollutants within the standards set by
the Occupational Safety and Health Administration.
Hazard assessment describes the nature, concentra-
tion, and duration of pollutants. Exposure assessment
quantifies the population exposed and the degree of

exposure. Risk assessment describes the probable
result for a population from all exposures. Integrated
health risk assessments and economic assessments
are still rare.

Modeling and data systems are needed to predict,
measure, and monitor the ultimate effects of air pollu-
tion from fires on human or ecosystem health, on the
economy, and on the comfortable enjoyment of life and
property. Risk assessment methods are needed to
compare these effects with those from other sources.

Emission Inventories ____________
An emission inventory is an estimate of the mass of

emissions by class of activity within a specified geo-
graphic area in a specified amount of time. Usually, an
inventory is compiled by multiplying the appropriate
emission factor (see chapter 4) by the estimated level
of activity (in other words, tons of fuel consumed).

Development of emission inventory methods for
fires was recently reviewed in detail by Battye and
Battye (2002). The report considers prior attempts at
emission inventory, describes approaches to estimat-
ing emissions from fires, and reviews the scientific
information available as components of an inventory.
The report also reviews emission reduction strategies
and smoke management techniques.
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An emission inventory provides an understanding
of the relative burden on the air resource from par-
ticular air pollution source categories. Emission in-
ventories help explain the contribution of source
categories to pollution events, provide background
information for air resource management, provide
the means to verify progress toward emission reduc-
tion goals, and provide a scientific basis for State air
program development. An accurate emission inven-
tory provides a measured, rather than perceived,
estimate of pollutant production as the basis for
regulation, management action, and program com-
pliance. Emission inventories should include all im-
portant source categories including mobile, area, and
stationary, and the inventories are not complete
unless difficult-to-quantify sources such as agricul-
tural burning, backyard burning, rangeland burn-
ing, and wildland and prescribed burning are ad-
dressed. Emission inventories are a basic requirement
of State air resource management programs and are
a required element of State implementation plans
(SIPs). Emission inventories are also compiled annu-
ally at the national level and for specific geographic
regions (sub-State, multi-State, or multi-jurisdic-
tion) to address a particular regional air quality
issue.

The science necessary to accurately estimate emis-
sions from prescribed burning is quite good for most
fuel types in the United States if good quality informa-
tion about several critical variables is known. Area
burned, fuel type, fuel loading, fuel arrangement, fuel
consumption, and emission factors are all needed to
accurately estimate emissions. Some of these require
onsite reporting for reasonable accuracy including
area burned, fuel type, and fuel arrangement. Other
factors can be defaulted or estimated with reasonable
accuracy if some other information is known. Fuel
loading can be defaulted with knowledge of the fuel
type and arrangement. Fuel consumption can be cal-
culated with knowledge of the fuel type, fuel loading,
and fuel moisture. Emission factor assignment is made
with knowledge of the fuel type.

The science of predicting emissions from wildland
fire is much weaker than for prescribed fire. In addi-
tion, it is generally far more difficult to obtain decent
quality information about individual wildland fires.

In most cases, the information gap that makes fire
emissions prediction a difficult endeavor is good qual-
ity, consistent, and regular reporting of the specific
onsite variables needed for emissions estimation. Data
collection systems that are supported and utilized by
fire managers need to be developed for every State
where a reasonable estimate of prescribed fire emis-
sions is desired. Data collection for wildfire emissions
estimation will be more difficult because some of the
needed information is not currently available in a way

that is compatible with emissions estimation require-
ments. For example, a single wildfire often burns
through many different fuel types, but current report-
ing requirements request the fuel type at the point of
ignition. This fuel type may or may not be representa-
tive of the majority of acres burned in the wildfire.
Also, acres burned in wildland fires may be the area
within the fire perimeter rather than the actual acres
blackened by fire as is needed for emissions estima-
tion. Similarly, the area reported as burned in pre-
scribed fires is often the area authorized for burning
whether or not the entire burn was completed.

State Emission Inventories

High quality Statewide inventories of daily emis-
sions from prescribed fire have been developed by
Oregon and Washington since the 1980s (Hardy and
others 2001). Eleven other States (Alabama, Alaska,
Arizona, California, Colorado, Florida, Idaho, Mon-
tana, Nevada, South Carolina, and Utah) estimate
annual prescribed fire emissions from records of acre-
age burned by fuel type and fuel loading at the end of
the burning season. Many other States (such as Michi-
gan, New Mexico, and Tennessee) currently have no
annual reporting program.

No State has a reporting system for wildland fires
that is based on actual, reported data from individual
wildland fires events. Any estimate a State may have
of wildland fires emissions is based on gross assump-
tions about fuel loading and consumption, and on an
area-burned figure that may systematically overesti-
mate the true value.

Regional Emission Inventories

Several recent regional inventories compiled in
support of regional haze program development have
shown new approaches to fire emission inventory
development.

The Fire Emissions Project (FEP) calculated an
emissions inventory for 10 Western States for a cur-
rent year (1995) using actual reported data, plus two
future years (2015 and 2040) using manager projec-
tions of fire use. Fourteen vegetative cover types were
chosen to characterize the range of species types within
the 10-State domain. Within each vegetative cover
type, up to three fuel loading categories (high, me-
dium, and low) could be specified by field fire manag-
ers. Fuel consumption calculations relied on expert
estimates of fuel moisture believed to be most fre-
quently associated with a particular type of burning.
Emission factors were assigned based on the vegeta-
tive cover type. The FEP inventory was used during
the Grand Canyon Visibility Transport Commission
(GCVTC) effort to apportion sources of visibility im-
pairment in the Western States.
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The GCVTC also sponsored the development of a
wildland fire emissions inventory for the period 1986
through 1992. The GCVTC wildfire inventory included
only wildland fires greater than 100 acres in size
(capturing approximately 98 percent of the acreage
burned). The variability of wildland fire emissions,
which ranged from 50,000 tons per year of PM2.5 to
more than 550,000 tons per year over the 7 years
studied, indicates the difficulty in selecting a single 1
year period that is representative of “typical” fire
emissions (GCVTC 1996a).

In 1998, analysts at the Forest Service’s Missoula
Fire Sciences Laboratory, Rocky Mountain Research
Station, used the FEP management strategies with
new, additional data to estimate emissions from wild-
land fires in the Western States (Hardy and others
1998). This inventory of potential emissions used a
suite of new or improved spatial data layers, including
vegetation/cover type, ownership, fuel and fire charac-
teristics, modeled emissions and heat release rates,
and fuels treatment probability distributions. These
inventories are included in the Environmental Protec-
tion Agency’s (EPA) National Emission Inventory
(NEI).

Wildland fire frequency and occurrence are highly
variable in time and space (fig. 7-1). The impact of
wildland fire smoke on Class I area visibility is also
expected to be highly variable from year to year with
episodic air quality and visibility impact events that
are difficult to predict. Seasonal impacts may be many
times higher than annual averages.

National Emission Inventories

National emission inventories for prescribed fire
have been compiled and reported by several investiga-
tors (Chi and others 1979; Peterson and Ward 1992;
Ward and others 1976; Yamate and others 1975). Of
these, only the Peterson and Ward inventory of par-
ticulate matter and air toxic emissions from pre-
scribed fires during 1989 is still useful today, despite
the inconsistencies in the information available to
compile the emission estimates. The poor data collec-
tion and inconsistent or nonexistent reporting sys-
tems in use at the time of the 1989 inventory continue
today.

Improving Emission Inventories

Significant barriers to compiling better regional
inventories include:

• Varying degrees of availability and number of
records describing burning activity over mul-
tiple States, multiple agencies, ownerships,
and Tribes.

• Lack of a national wildland fuel classification
system with spatial attributes.

• Limited and inappropriate modeling of fuel
consumption and emission characterization
for prescribed burning in natural fuels.

Sandberg and others (1999) describe remedies to
overcome some of the limitations of data collection and
availability. These remedies are intended to guide

Figure 7-1—Number of acres burned by wildfire between 1960
and 2000 (National Interagency Fire Center 2002).
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future inventory development efforts. Significantly,
these remedies include adoption of standardized burn
reporting protocols to be used by all agencies, Tribes,
and ownerships to report daily emissions for each
burn, location of the burn, and many other param-
eters.

The Fuel Analysis, Smoke Tracking, and Report
Access Computer System (FASTRACS) is a sophisti-
cated system developed by the Forest Service and
Bureau of Land Management in the Pacific North-
west. FASTRACS tracks all the information needed
for accurate estimation of emissions from Federal use
of prescribed fire in Washington and Oregon including
the ability to track use of emission reduction tech-
niques. As long as field fire managers are doing a
reasonable job of reporting the information required
by FASTRACS, this system provides excellent emis-
sions calculation capabilities and the best data report-
ing standards in the country. Currently other land-
owners, such as State and private, are not using
FASTRACS in Washington and Oregon although there
is an effort under way to bring them into the system.
FASTRACS is also being looked at by other regions
and may be adopted or emulated across the country.
For more information about FASTRACS, see http://
www.fs.fed.us/r6/fastracs/index.htm.

Another data reporting system is under develop-
ment in California. The Prescribed Fire Information
Retrieval System (Cal/PFIRS) is a centralized elec-
tronic database that allows all users immediate access
to detailed information on burns on a day-to-day basis.
Cal/PFIRS does not include the kind of detailed re-
porting of information that could be used to assess
the use of emission reduction techniques but does
provide a reasonable estimate of the amount of burn-
ing taking place. For more information on Cal/PFIRS,
see http://www.arb.ca.gov/smp/progdev/techtool/pfirs.htm.

Research since about 1970 has significantly im-
proved the completeness and accuracy of emission
inventory techniques. However, the science is being
pressed forward because of new demands for regional
scale emission transport information needed to assess
the impact of wildland smoke on PM2.5 air quality
standards and regional haze. Because of new air regu-
latory demands, emission inventories, when used in
concert with regional models, have become an impor-
tant means of apportioning fire smoke impacts on air
resources.

Air Quality Monitoring ___________
Unlike emission inventories, air quality monitors

determine actual pollutant loading in the atmosphere
and are therefore the most direct measure of air
quality on which air regulatory programs are based.
Samples of particulate matter in the atmosphere (PM10

or PM2.5, or both) are also used for source apportion-
ment purposes to identify the origin of the aerosols.
Monitoring of smoke from fires, however, presents
several unusual technical challenges that affect re-
sults. These challenges center on the fact that smoke
from fires has several unique characteristics.

Current Monitoring Techniques

The three principal methods of measuring air pollu-
tion are samplers, optical instruments, and electro-
chemical devices. Samplers are most common for long-
term monitoring. Data from optical meters and
electrochemical devices can be stored in a computer or
datalogger on site or transmitted from remote loca-
tions to provide real-time information.

Samplers—Samplers collect aerosols on a filter or
chemical solution. A simple gravimetric measure of
mass concentration may be obtained, or different types
of filters or solutions can be used, to help define
chemical species and particle sizes. For chemical spe-
ciation, filters must be sent to a laboratory for analy-
sis. For this reason, sampling information usually is
delayed by days to weeks after the sampling period.
Active samplers are the most accurate as they use a
pump to pass a known volume of air through the
collector. Passive samplers are the least expensive,
allowing air to reach the collector by some physical
process such as diffusion. Tapered Element Oscilla-
tion Microscales (TEOMs) are a special class of sam-
plers that provide a gravimetric measure of mass
concentration at the studied site without having to
transport filters to a laboratory.

All sampling devices lose some degree of semivolatile
fine particulates (Eatough and Pang 1999). Positive
and negative organic carbon artifacts are just two of
several factors that contribute to variability between
different colocated instruments. To minimize this
variability, consistent sampling methods are used
throughout a sampling network to help recognize
such artifacts.

The analytical technique used to quantify carbon
concentrations from filters also can cause discrepan-
cies between measurements (Chow 2000). For ex-
ample, the NIOSH 5040 method (Cassinelli and
O’Conner 1994) is a thermal-optical transmittance
method of speciating total, organic, elemental, and
carbonate (inorganic) carbon being adopted by the
EPA’s PM2.5 program. This method is a departure
from the thermal-optical reflectance method that has
been used in the IMPROVE program. Recent compari-
sons between ambient samples have identified differ-
ences as great as 17.5 ± 15 percent (EPA 2000a), which
can be significant when monitoring for National Am-
bient Air Quality Standards (NAAQS) violations.
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Because filters can become overfull, they must be
changed regularly and are not suitable for sites close
to fires where particulate concentrations are heavy.

Optical Instruments—Optical instruments use a
light source to measure the atmosphere’s ability to
scatter and absorb light. Common devices are photom-
eters, which measure the intensity of light, and trans-
missometers, which are photometers used to measure
the intensity of distant light. Photometers and trans-
missometers have a direct relation to visual range.
Nephelometers measure the scattering function of
particles suspended in air. They can be used to deter-
mine the visual range, as well as the size of the
suspended particles, by changing the wavelength of
the light source. Wavelengths of 400 to 550 nm are
common for monitoring smoke from biomass fires,
while wavelengths of 880 nm are more common for
road dust measurements. Because the instruments
have increasing application for both long-term and
real-time monitoring of smoke, Trent and others (2000)
evaluated the accuracy of several different optical
instruments by comparing their output to gravimetric
samples.

Investigators have found some problems in field
reliability and temperature drift among photometers
and nephelometers (Trent and others 1999, 2000).
While Davies (2002) recommends a general coefficient
for relating scattering coefficient to drift smoke from a
DataRAM nephelometer, a precise relation between a
nephelometer’s measured scattering coefficient and
particle concentration depends on the wavelength of
the instrument and the particle distribution of the
medium, which varies by combustion stage and fuel
type.

Electrochemical Devices—Electrochemical de-
vices have been used in industrial applications for
many years. Their small size and ability to measure
criteria pollutants, such as carbon monoxide, make
them suitable for personal monitoring or monitoring
in extremely remote locations. Thus, they are gaining
value for monitoring wildland smoke impacts. For
example, Reinhardt and Ottmar (2000) recommend
the use of an electrochemical dosimeter for monitoring
exposure levels experienced by wildland fire fighters
(Reinhardt and Ottmar 2000).

States, Tribes, and local air agencies use a variety of
instruments to monitor long-term and real-time smoke
impacts for both NAAQS and visibility to suit their
local interests and regulatory needs. The Interagency
Monitoring of Protected Visual Environments (IM-
PROVE) program is one of few nationally coordinated
monitoring projects.

IMPROVE was established in 1985 in response to
the 1977 amendment of the Clean Air Act requiring
monitoring of visibility-related parameters in Class I

areas throughout the country (fig. 7-2). The IMPROVE
network uses a combination of speciation filters on
active samplers to measure physical properties of
atmospheric particles (PM2.5 and PM10) that are
related to visibility. Many sites also include transmis-
someters and nephelometers optical devices. Also,
cameras are used document the appearance of scenic
vistas. Because the samplers collect for 24 hours every
3 days, their information is used for determining long-
term trends in visibility. The optical and camera
devices can monitor more frequently and can help
define short-term or near real-time changes in visibil-
ity impact

Source Apportionment ___________
Most air monitoring programs are designed to mea-

sure particulate mass loading to provide data for
PM10 and PM2.5 NAAQS and visibility. Because
these sizes of particles can come from many sources,
they are not useful for apportioning to one source or
another. While the IMPROVE program provides spe-
ciated aerosol data that are helpful in source attribu-
tion analysis, the averaging periods of samples and
sparse location of sites make IMPROVE measure-
ments difficult to use for source attribution without
supplemental measurements or modeling tools.

Wotawa and Trainer (2000) found that 74 percent of
the variance in the average afternoon carbon monox-
ide levels could not be attributed to anthropogenic
sources during the 1995 Southern Oxidant Study
(Chameides and Cowling 1995). Analysis of weather
patterns indicated that transport of wildland fire
smoke from Canada could explain the elevated carbon
monoxide levels. Also, they discovered a statistically
significant relationship between the elevated carbon
monoxide and ground-level ozone concentrations.

Characterization of organic carbon compounds found
within the organic carbon fraction of fine particulate
matter coupled with inclusion of gaseous volatile or-
ganic compounds (VOCs) holds substantial promise in
advancing the science of source apportionment (Watson
1997). The key to the use of chemical mass balance
methods is the acquisition of accurate data describing
the chemical composition of both particulate matter
and VOCs in the ambient air and in emissions from
specific sources. Several organic compounds unique to
wood smoke have been identified including retene,
levoglucosan, thermally altered resin, and polycyclic
aromatic hydrocarbons (PAH) compounds. These com-
pounds are present in appreciable amounts and can be
used as signatures for source apportionment if special
precautions are taken during sampling to minimize
losses (Standley and Simoneit 1987). Inclusion of
these aerosol and VOC components in the speciation



50 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 5. 2002

analysis appears worthwhile but would increase moni-
toring and sample analysis costs.

Source Apportionment Methods

Apportionment of particulate matter mass to the
respective contributing sources is done through both
mechanistic models (dispersion models) and receptor-
oriented techniques that are based on the characteris-
tics of the particles collected at the receptor. The best
approach is through the use of both techniques, ap-
plied independently, to develop a “weight of evidence”
assessment of source contributions of smoke from fire.
A third approach is through the use of visual and
photographic systems that can document visibility
conditions over time or track a plume from its source
to the point of impact within a Class I area.

Figure 7-2—IMPROVE monitoring network in 1999 (http://vista.cira.colostate.edu/improve/Overview/IMPROVEProgram.htm).

Receptor-Oriented Approaches

Receptor-oriented approaches range from simple
signature applications to complex data analysis tech-
niques that are based on the spatial, temporal, and
chemical constituents (“fingerprint”) of various sources.

Simple signature applications for smoke from fire
are based on chemically distinct emissions from fire.
For example, methyl chloride (CH3Cl) is a gas emitted
during wood combustion that has been used in this
manner to identify impacts of both residential
woodstove smoke and smoke from prescribed fires
(Khalil and others 1983).

Speciated Rollback Model —The speciated roll-
back model (NRC 1993) is a simple hybrid model that
uses aerosol data collected at the receptor with emis-
sion inventories to estimate source impacts. It is a
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The limitations of the speciated rollback model are
several:

• Deviations from the assumption of spatially
homogeneous emissions are likely to occur
when air quality is most critical at a single
receptor where a single emission source can
have an inordinate impact.

• Secondary particle formation is assumed to be
linear to changes in precursor emissions.

• Meteorological conditions do not change from
year to year.

• Emission inventory errors have a direct, pro-
portional effect on the model estimates.

The model can be applied to any temporal concentra-
tion such as annual average, worst 20th percentile, or
worst daily average scenarios in any region that meets
the constraint on the spatial distribution of emission
changes. It is straightforward, necessary input data
are available, and the model assumptions are easily
understood. It makes use of chemical speciation data
collected from the IMPROVE network but cannot
apportion contributions made from source classes not
included in the inventory.

Chemical Mass Balance Model—The chemical
mass balance model, CMB7 (Watson 1997; Watson
and others 1990), infers source contributions based on
speciated aerosol samples collected at a monitoring
site. Chemical elements and compounds in ambient
aerosol are “matched” to speciated source emission
profiles “fingerprints” by using least-squares, linear
regression techniques to apportion the aerosol mass.
CMB7 has been widely used within the regulatory
community to identify and quantify the sources of
particles emitted directly to the atmosphere. The model
is based on the relationship between characteristics of
the airborne particle (ci), the summation of the product
of the ambient mass concentration contributed by all
sources (Sj), and the fraction of the characteristic
component in the source’s fingerprint (fij).

ci = ∑jSjfij (2)

Given detailed information about the chemical spe-
ciation of the ambient aerosol and similar information
about all of the emission sources impacting the recep-
tor, the CMB7 model can apportion the aerosol mass
among the sources if certain assumptions are met.

To minimize error, there must be more aerosol
components than sources to be included in the least-
squares linear regression fit. If there are more compo-
nents measured than sources, then the comparison of
model-estimated concentrations of these additional
components provides a valuable internal check on
model consistency.

spatially averaged model that disaggregates major
particle components into chemically distinct groups
that are contributed by different types of sources. A
linear rollback model is based on the assumption that
ambient concentrations (C) above background (Cb) are
directly proportional to total emissions in the region of
interest (E):

C – Cb = kE (1)

The proportionality constant, k, is determined over
a historical time period when both concentrations C
and Cb as well as regional emissions E are known.
Once k is determined, new concentration estimates
can be derived for other emission levels of interest
assuming that meteorological conditions are constant
over the same averaging time. Because the anthropo-
genic components in the particle mass consist almost
entirely of sulfates, nitrates, organic carbon, elemen-
tal carbon, and crustal material, a maximum contribu-
tion from fire can be made based on the assumption
that all of the organic carbon or elemental carbon is
from primary fire emissions. Various complexities can
be added to this model; components can be disaggre-
gated by particle-size fraction (coarse versus fine par-
ticles) as well as by chemical composition. Additional
distinctions can be made between primary and sec-
ondary particles, and nonlinear transformation pro-
cesses can be approximated to account for atmospheric
reactions.

Simple proportional speciated rollback models re-
quire data on the chemical composition of airborne
particles, knowledge or assumptions regarding sec-
ondary particle components, an emission inventory
for the important source categories for each particle
component and each gaseous precursor, and knowl-
edge or assumptions regarding background concen-
trations for each component of the aerosol and each
gaseous precursor.

The speciated rollback model was applied by the
NRC Committee on Haze in National Parks and Wil-
derness Areas to apportion regional haze in the three
large regions of the country (East, Southwest, and
Pacific Northwest) by including extinction coefficients
to the estimated mass concentrations (NRC 1993). The
percentage of anthropogenic light extinction appor-
tioned to forest management burning was estimated
at 11 percent in the Northwestern United States on an
annual basis assuming that about one-third of the
measured organic carbon is of natural origin. The 1985
National Acid Precipitation Assessment Program
(NAPAP) inventory was used in this analysis, which
also assumed that the elemental carbon and organic
carbon fractions of the PM2.5 emissions for forest
management burning were 6 percent and 60 percent,
respectively.
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The chemical components in the source “finger-
print” must be conserved and not altered during atmo-
spheric transport — a rather large limitation.

Model resolution is typically limited to five or six
source types, and separation of two sources with simi-
lar emission profiles (for example, prescribed burning
and residential woodstove smoke) is difficult if both
sources are active at the same time.

Systematic error analysis procedures have been
developed for the CMB7 model, and the results have
been published in model validation studies (NRC
1993). However, the model cannot apportion second-
ary aerosols (sulfate and nitrate); it is limited in its
ability to apportion all of the mass to specific sources.

The ability of the model to apportion smoke from fire
depends on several factors:

• The presence or absence of smoke from other
forms of vegetative burning (woodstoves, agri-
cultural burning, open burning, and others).

• The magnitude of the smoke impact at the
receptor (for example, well-dispersed smoke
that contributes small amounts of aerosol mass
is more difficult to distinguish).

• The uncertainty in both the ambient aerosol
and the source “fingerprint” components that
the model most heavily weights in the regres-
sion analysis, typically organic carbon, potas-
sium, and elemental carbon. The greater the
uncertainty of these measurements, the less
“fitting pressure” they have in influencing the
regression solution.

• Inclusion of multiple aerosol components that
are as nearly unique to smoke from fires (en-
demic signatures) as possible. These include
organic compounds such as retene and
levoglucosan, as well as gaseous signature
such as carbon monoxide and methyl chloride.
The more the source profile distinguishes pre-
scribed or wildland fire smoke from other
sources, the more accurate the source appor-
tionment is likely to be.

Factor Analysis and Multiple Linear
Regression

When many ambient samples are available, linear
regression and factor analysis techniques can be ap-
plied to the dataset to obtain empirical insights into
the origin of the particles. Factor analysis is based on
the assumption that chemical components of the aero-
sol that covary are emitted from a common source.
Cluster patterns can then be matched to the source
profiles of known sources to identify the degree of
covariance associated with a specific source category.

Source profiles can be recovered from the ambient
data by using two special forms of factor analysis
(VARIMAX rotation) or, when the profiles are approxi-
mately known, target transformation factor analysis
(Hopke 1985). Factor analysis can therefore serve to
refine the source profile information used in chemical
mass balance analysis. In the context of wildfire smoke
apportionment, investigators have historically looked
for a high degree of covariance between organic car-
bon, elemental carbon, and potassium (total, water
soluble, and/or nonsoil potassium) as the cluster com-
ponents that signal particles emitted from vegetative
burning of all kinds. Unfortunately, these components
of the aerosol are not necessarily unique to smoke from
vegetative burning.

Linear regression analysis is a well-established sta-
tistical procedure for estimating unknown coefficients
in linear relationships where a large dataset of obser-
vations of both the dependent and independent vari-
ables are present. In the terminology of regression
analysis, c in equation (2) is the variable, Sj is the
independent variable, and fj the regression coeffi-
cients. In practice, the independent variable is taken
to be proportional to source strength rather than the
source strength themselves. Multiple linear regres-
sion has been widely used to apportion total particle
mass, the most common approach being use of signa-
ture concentrations taken directly as the independent
variable, fj. Significantly, gaseous pollutant data can
be included in the regression to increase the model’s
ability to resolve sources. Although carbon monoxide
would greatly enhance the success of the model as it is
emitted by wildfires in large quantities and is stable in
the atmosphere, carbon monoxide is not routinely
included in nonurban monitoring programs.

Regression analysis has been used successfully to
apportion the total carbon portion of the aerosol mass
between wood smoke, vehicle exhaust, and other
sources by using nonsoil potassium . The regression-
derived estimates were then validated by 14C isotope
analysis, which is a direct indicator of “contemporary”
versus fossil fuel carbon sources. The 14C measure-
ments nicely confirmed the source apportionment re-
sults by regression analysis (r=0.88) (NRC 1993).

Summary

Receptor-oriented methods of particle mass source
apportionment have proven successful in a large num-
ber of urban studies worldwide. A number of these
studies have attempted to apportion wildfire smoke on
the basis of a set of aerosol and source emission trace
elements and compounds. The experimental design of
these studies has limited the ability of receptor models
to resolve wildfire smoke from other sources. With
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improvements in speciation of the organic carbon
component of the aerosol, and inclusion of carbon
monoxide, methyl chloride, and other endemic signa-
tures, the ability of these techniques to resolve sources
and minimize uncertainties will increase. Sensitivity
studies are needed to determine which additional
components beyond the standard array of trace ele-
ments, ions, and carbon fractions would be most ben-
eficial to include in future monitoring programs.

Mechanistic Models _____________
As noted in chapter 6, multiple dispersion models

have been used to estimate air quality impacts of
single or multiple fires at local and regional scales.
Eulerian regional-scale models have been principally
used for source apportionment application both to
estimate contributions to particulate air quality and
regional haze. The suitability of such models for ap-
portionment applications largely depends on the com-
pleteness and accuracy of the emission inventory in-
puts used by the model. Unfortunately, few field
validations are available.
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Chapter 8: Consequences of
Fire on Air Quality

The potential impacts of fire-induced degradation of
air quality on public health and welfare range from
occupational exposure of smoke on firefighters to
broader economic and social impacts and highway
safety.

Health Effects __________________

National Review of Health Effects

In 1996, the Environmental Protection Agency (EPA)
conducted an extensive review of the science relating
human health effects to particulate matter (PM), the
principal pollutant of concern from fires (EPA 1996).
The review found that (1) epidemiological studies
suggest a variety of health effects at concentrations
found in several U.S. cities and (2) ambient particles of
greatest concern to health were those smaller than 10
micrometers in diameter. Results of efforts to trace the
physiological and pathological responses of the body to
PM are unclear, and demonstration of possible mecha-
nisms linking ambient PM to mortality and morbidity
are derived from hypotheses in animal and human
studies. It is known, however, that PM produces physi-
ological and pathological effects by a variety of mecha-
nisms, including:

• Increased airflow obstruction by PM-induced
narrowing of airways.

• Impaired clearance of lung pathways caused
by hypersecretion of mucus caused by PM
exposure.

• Lung responses to PM exposure including
hypoxia, broncho-constriction, apnea, impaired
diffusion and production of inflammatory
mediators.

• Changes in the epithelial lining of the alveolar
capillary membrane that increase the diffu-
sion distances across the respiratory mem-
brane, thereby reducing the effectiveness of
blood gas exchange.

• Inflammatory responses that cause increased
susceptibility to asthma, chronic obstructive
pulmonary disease (COPD) and infections.

Recent information also suggests that several sub-
groups within the population are more sensitive to PM
than others. Children are more likely to have de-
creased pulmonary function, while increased mortal-
ity has been reported in the elderly and in individuals
with cardiopulmonary disease. Asthmatics are espe-
cially susceptible to PM exposure. In addition, coarse
(2.5 to 10µm) particles from road dust or windblown
soil were found to have less toxicity than fine particles
(less than 2.5µm) that include acid aerosols, diesel
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emissions, smoke from fires, and potentially carcino-
genic PAH compounds.

Occupational Exposure to Wildland Fire
Smoke

Wildland firefighters and fire managers have long
been aware that smoke exposure occurs during their
work (Reinhardt and Ottmar 1997; Sharkey 1997).
Although the long-term health effects from occupa-
tional smoke exposure remain unknown, the evidence
to date suggests that brief, intense smoke exposures
can easily exceed short-term exposure limits in peak
exposure situations such as direct attack and holding
firelines downwind of an active wildfire or prescribed
burn. Shift-average exposure only occasionally exceeds
recommended instantaneous exposure limits set by the
American Conference of Governmental Industrial Hy-
gienists (ACGIH), and rarely do they exceed Occupa-
tional Safety and Health Administration (OSHA) time
weighted average (TWA) limits (fig. 8-1) (Reinhardt
and Ottmar 2000; Reinhardt and others 2000). Overex-
posure increases to 10 percent of the time if the expo-
sure limits are adjusted for unique aspects of the fire
management workplace; these aspects include hard
breathing, extended hours, and high elevations, all
factors which intensify the effects of many of the health
hazards of smoke (Betchley and others 1995; Materna
and others 1992; Reinhardt and Ottmar 2000; Reinhardt
and others 2000). It could be argued that few firefighters
spend a working lifetime in the fire profession, and thus
they should be exempt from occupational standards

that are set to protect workers over their careers. But
this argument is irrelevant for irritants and fast-acting
health effects such as eye and respiratory irritation,
headache, nausea, and angina. An exposure standard
specifically for wildland firefighters and appropriate
respiratory protection may need to be developed
(Reinhardt and Ottmar 2000).

In spite of the studies that have been done, major
data gaps remain:

• In the area of health hazards, not enough
evidence is available to defend the commonly
cited “inert” classification of total and respi-
rable particulate in dust and smoke; there is
little knowledge of the occurrence of crystal-
line silica in dust at fires; and there is incom-
plete characterization of aldehydes and other
respiratory irritants present in smoke
(Reinhardt and Ottmar 1997, 2000).

• The differences in smoke exposure between
large and small wildland fires have not been
characterized in spite of the fact that one or
two crews extinguish the vast majority of
wildfires (Reinhardt and Ottmar 2000).

• The long-term health experience of wildland
firefighters is unknown, although anecdotal
reports and the biological plausibility of cu-
mulative health effects indicate a potentially
greater incidence of disease and death than in
the general population of workers (Booze and
Reinhardt, in press; Sharkey 1997).

Although data gaps remain, enough information has
been gathered to chart a course to alleviate many of
the overexposures. Respiratory protection is available
for irritants such as aldehydes and particulate matter
but not for carbon monoxide. Respirators can be heavy,
hot, and impede the speed of work, but some new
models are light, simple and could be worn only when
needed (Beason and others 1996; Rothwell and Sharkey
1995). The entire costly process of medical evalua-
tions, fitness testing, maintenance, and training must
be employed if respirators are to be used. But there are
immediate benefits to reducing respiratory irritant
exposure. Small electrochemical dosimeters can pro-
vide instant warnings about carbon monoxide levels in
a smoky situation, and fire crew members equipped
with respirators and carbon monoxide monitors have
all the protection necessary to stay and accomplish
objectives safely and withdraw when the carbon mon-
oxide levels become the limiting factors (Reinhardt
and others 1999). In the future, a respirator for use
during wildland fires may be developed that offers
warning and protection against carbon monoxide as
well. Although some work has been done in this area,
we need more significant development. Smoke expo-
sure is a hazard only a small portion of the time and is

Figure 8-1—Firefighters being monitored for smoke exposure.
Monitoring equipment seen includes a red backpack that col-
lects gas samples from the breathing zone of the firefighters
and a white-colored particulate matter filter sampler attached to
the chest. (Photo by Roger Ottmar)
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manageable because the situation where it occurs can
be predicted. A long-term program to manage smoke
exposure at wildland fires could include (1) hazard
awareness training, (2) implementation of practices to
reduce smoke exposure such as rotating crews and
providing clean air sites, (3) routine carbon monoxide
monitoring with electronic dosimeters, (4) improved
recordkeeping on accident reports to include separa-
tion of smoke related illness among fireline workers
and fire camp personnel, and (5) improved nutritional
and health habits. Fire management practices such as
crew rotation, awareness training, and carbon monox-
ide monitoring can mitigate the hazard and allow
firefighters to focus on the job of fire management,
lessening the distraction, discomfort, and health im-
pacts of smoke exposure (Reinhardt and Ottmar 2000).

Research Issues

A number of wildland fire health effect research
issues flow from the EPA staff report (Clean Air
Scientific Advisory Committee1995) and occupational
health exposure studies.

Research into the health effects of particulate mat-
ter is largely based on epidemiological studies con-
ducted over long periods in urban centers with high
hospital admittance or large air quality databases, or
both. Consequently, inadequate information is avail-
able that relates short-term, acute smoke exposure
(such as would be experienced by a visitor to a
National Park or to a community near a wildfire) to
human health effects. As a result, little or no specific
guidance is available to wildland fire managers, air
quality regulators, or public health officials who need
to responsibly judge the public health risks of expo-
sure to extremely high smoke concentrations. This
gap in knowledge was clearly evident during the 1988
Yellowstone fires and later wildfire events when
quick decisions had to be made on how best to protect
public health in communities near major wildfires
(WESTAR 1995). The best available guidelines are
those published by EPA (1999) for assessing the risk
to health from air pollution (table 8-1). These guide-
lines may or may not reflect the specific hazards of
pollutants from fires, which will have a different
chemical composition.

Table 8-1—Pollutant-specific breakpoints for the air quality index (AQI) and accompanying health effects statements (adapted from
EPA 1999).

Category PM2.5 (24-hour) PM10 (24-hour)
Concentration Health effects Concentration Health effects
breakpoints statements breakpoints statement

µg/m3 µg/m3

Good 0.0-15.4 None 0-54 None

Moderate 15.5-40.4 None 55-154 None

Unhealthy 40.5-65.4 Increasing likelihood of respiratory 155-254 Increasing likelihood of respiratory
for sensitive symptoms in sensitive individuals, symptoms and aggravation of lung
groups aggravation of heart or lung disease disease, such as asthma.

and premature mortality of persons
with cardiopulmonary disease and
the elderly.

Unhealthy 65.5-150.4 Increased aggravation of heart or lung 255-354 Increased respiratory symptoms and
disease and premature mortality in aggravation of lung disease, such
persons with cardiopulmonary disease as asthma; possible respiratory
and the elderly; increased respiratory effects in general population.
effects in the general population.

Very unhealthy 150.5-250.4 Significant aggravation of heart or lung 355-424 Significant increase in respiratory
disease and premature mortality in symptoms and aggravation of lung
persons with cardiopulmonary disease disease, such as asthma; increasing
and the elderly; significant increase in likelihood of respiratory effects in
respiratory effects in general population. general population.

Hazardous 250.5-500.4 Serious aggravation of heart or lung 425-604 Serious risk of respiratory symptoms
disease and premature mortality in and aggravation of lung disease,
persons with cardiopulmonary disease such as asthma; respiratory effects
and the elderly; serious risk of likely in the general population.
respiratory effects in general population.
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The long-term health effects of smoke exposure to
wildland firefighters are unknown in spite of anec-
dotal evidence that indicates the possibility of a
greater incidence of cardiopulmonary disease and
death than in the general population. Although car-
bon monoxide monitoring and respiratory protection
can mitigate the hazard, personal protection equip-
ment is still needed that allows firefighters to work
effectively without discomfort or distraction
(Reinhardt 2000).

Welfare Effects _________________
Air quality-related effects of smoke include the soil-

ing of materials, public nuisance, and visibility loss.
Because these and other consequences of smoke have
come increasingly into conflict with the public’s inter-
est in clean air, an understanding of these effects is
important to fire managers.

Soiling of Materials

The deposition of smoke particles on the surface of
buildings, automobiles, clothing, and other objects
reduces aesthetic appeal and damages a variety of
objects and building structures (Baedecker and others
1991). Studies of the effect of aerodynamic particle
size on soiling have concluded that coarse particles
(2.5 to 10µm) initially contribute more to soiling of
both horizontal and vertical surfaces than do fine
particles (less than 2.5µm), but that coarse particles
are more easily removed by rainfall (Haynie and
Lemmons 1990). Smoke from fires is largely within the
fine mode, although ash fallout in the near vicinity of
a fire is often also a concern. Smoke may also discolor
artificial surfaces such as building bricks or stucco,
requiring cleaning or repainting. Increasing the fre-
quency of cleaning, washing, or repainting soiled sur-
faces becomes an economic burden and can reduce the
life usefulness of the soiled material (Maler and Wyzga
1976).

Soiling from smoke also changes the reflectance of
opaque materials and reduces light transmission
through windows and other transparent materials
(Beloin and Haynie 1975).

When fine smoke particles (less than 2.5µm) infil-
trate indoor environments, soiling of fabrics, painted
interior walls, and works of art may occur. Curtains
may require more frequent washing because of soiling
or may deteriorate along folds in the fabric after being
weakened by particle exposure (Yocom and Upham
1977). As in the case of corrosion damage from acidi-
fied particles, these same particles accelerate damage
to painted surfaces (Cowling and Roberts 1954). Stud-
ies of the soiling of works of art at a museum in
southern California concluded that a significant frac-
tion of the dark-colored fine mode elemental carbon

and soil dust originated from outdoor sources (Ligocki
and others 1993). Smoke from fires is one source of
elemental carbon.

Public Nuisance and Visibility Loss

Nuisance smoke is the amount of smoke in the
ambient air that interferes with a right or privilege
common to members of the public, including the use or
enjoyment of public or private resources (EPA 1990).
The abatement of nuisance smoke is one of the most
important objectives of successful smoke manage-
ment (Shelby and Speaker 1990). Public complaints
about nuisance smoke are linked to loss of visibility,
odors, and ash fallout that soils buildings, cars, laun-
dry, and other objects. Acrolein (and possibly formal-
dehyde) in smoke at distances of 1 mile from the
fireline are likely to cause eye and nose irritation,
exacerbating public nuisance conditions (Sandberg
and Dost 1990).

Perhaps the most significant nuisance effect of smoke
from fire is local visibility reduction in areas impacted
by the plume. While visibility loss within Class I areas
is subject to regulation under the Clean Air Act, smoke
plume-related visibility degradation in urban and
rural communities is not. Nuisance is usually regu-
lated under State and local laws and is frequently
based on public complaint or, when highway safety is
compromised, the risk of litigation (Eshee 1995). The
courts have also ruled that the taking of private
property by interfering with its use and enjoyment
caused by smoke (and without just compensation) is in
violation of Federal Constitutional provisions under
the Fifth Amendment. The trespass of smoke may
diminish the value of the property, resulting in losses
to the owner (Iowa Supreme Court 1998).

Because the public links visibility loss with concerns
about the health implications of breathing smoke,
smoke management programs have been under in-
creasing pressure to minimize emissions and reduce
smoke impacts to the greatest degree possible (Core
1989). Visibility reduction is used as a measure of
smoke intrusions in several smoke management plans.
The State of Oregon program operational guidance
defines a “moderately” intense intrusion as a reduc-
tion of from 4.6 to 11.4 miles from a background
visibility of more than 50 miles (Oregon Department of
Forestry 1992). The State of Washington smoke intru-
sion reporting system uses a “slightly visible,” “notice-
able impact on visibility” or “excessive impact on
visibility“ to define light, medium, and heavy intru-
sions (Washington Department of Natural Resources
1993). The State of New Mexico program requires that
visibility impacts of smoke be considered in develop-
ment of the unit’s burn prescription (New Mexico
Environmental Improvement Board 1995).
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Economic and Social
Consequences__________________

The economic consequences of smoke are principally
in the areas of soiling-related losses and costs related
to reduced visibility.

Soiling-Related Economic Losses

Economic costs associated with materials damage
and soiling caused by airborne particles include reduc-
tion in the useful life of the damaged materials and the
decreased utility of the object. Losses caused by the
need for more frequent maintenance and cleaning are
also significant. Amenity losses occur when the in-
creased cleaning or repair of materials results in
inconvenience or delays, many of which are difficult to
quantify (Maler and Wyzga 1976).

Within the United States, however, the soiling of
buildings constitutes the largest category of surface
areas at risk to pollution damage (Lipfert and Daum
1992). Soiling on painted surfaces on residential build-
ings, resulting in a need to repaint exterior walls, has
caused damage approaching $1 billion per year (Haynie
and others 1990).

Willingness-to-pay estimates developed using the
contingent valuation method found that households
were willing to pay $2.70 per µg/m3 charge in particle
pollution to avoid soiling effects (McClelland and oth-
ers 1991). No estimates are available for costs specifi-
cally associated with smoke from fires.

Visibility-Related Costs

The importance of clean, clear air within the wild-
lands and National Parks of this nation is hard to
overemphasize. People go to these special places to
enjoy scenery, the color of the landscapes, and clarity
of the vistas. At Grand Canyon, 82 percent of 638
respondents rated “clean, clear air” as very important
or extremely important to their recreational experi-
ence (Ross 1988). Three National Park Service (NPS)
studies determined that air quality conditions affect
the amount of time and money visitors are willing to
spend at NPS units (Brookshire and others 1976;
MacFarland and others 1983; Schulze and others
1983). These studies found estimated onsite use val-
ues for the prevention or elimination of plumes that
ranged from about $3 to $6 (1989 dollars) per day per
visitor party at the park. Based on these results, the
implied preservation value for preventing a visible
plume most days (the exact frequency was not speci-
fied) at the Grand Canyon was estimated at about $5.7
billion each year when applied to the total U.S. popu-
lation (EPA 1996). Other investigators have suggested
that these estimates are overstated by a factor of 2 or
3 (Chestnut and Rowe 1990).

In the studies noted above, park visitors generally
responded that they would be willing to spend more
time and money if visibility conditions were better
and, conversely, less if visibility conditions were worse
(Ross 1988). The average amount of time visitors were
willing to spend traveling to a vista for every unit
change in visibility (.01 km–1 extinction coefficient)
was between 15 minutes and 4 hours. These results
provide evidence that changes in visual air quality can
be expected to affect visitor enjoyment and satisfac-
tion with park visits.

Even given the limitations and uncertainties of
contingent valuation surveys, economic values re-
lated to visibility degradation are clearly likely to be
substantial.

Public Perception of Haze—Perceived visual air
quality (PVAQ) has been used as a measure of the
public’s acceptance of haze conditions (Middleton and
others 1983). Subjects were asked to judge the visual
air quality in several photos depicting vistas under
different haze conditions using a scale of 1 to 10, 1
being the worst and 10 being the best. These 1 to 10
scales reflect people’s perceptions and judgments con-
cerning visibility conditions. By matching particulate
air quality conditions that occurred at the time of the
photographs, researchers have been able to develop a
relationship between PVAQ and particulate matter
concentrations (Middleton and others 1985). Even
small increases in particulate concentrations in the
atmosphere result in dramatic decreases in PVAQ.
Because of the light scattering efficiency of smoke, this
relationship is especially applicable to fire emissions.

Cultural Consequences of Visibility Loss—“Na-
tional parks and wilderness areas are among our
nation’s greatest treasures. Ranging from inviting
coastal beaches and beautiful shorelines to colorful
deserts and dramatic canyons to towering mountains
and spectacular glaciers, these regions inspire us as
individuals and as a nation” (NRC 1993). With these
words, the National Research Council (NRC) noted
the importance of preserving the scenic vistas of the
nation. Congress, in recognition of the scenic values of
the nation, adopted the Clean Air Act Amendments of
1977, which established a national visibility protec-
tion program. The GCVTC was later established in the
1990 amendments to the act to address visibility
impairment issues relevant to the region surrounding
Grand Canyon National Park. Following 4 years of
study, the GCVTC concluded that smoke from wild-
land fires is likely to have the single greatest impact on
visibility in Class I areas of the Colorado Plateau
through the year 2040 (GCVTC 1996c). While difficult
to quantify, there is consensus that visibility loss
associated with smoke from wildland fire and other
sources has important cultural consequences on the
nation.
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Highway Safety _________________
Smoke can cause highway safety problems when it

impedes a driver’s ability to see the roadway (fig. 8-2)
and can result in loss of life and in property damage at
smoke levels that are far below NAAQS. This section
focuses on highway safety issues in the Southeastern
United States because this is where the foremost
forestry-related air quality problem has been in the
past. We also describe tools being developed to aid the
land manager in avoiding highway safety problems.

Although smoke at times can become a problem
anywhere in the country, it is in the Southern States,
from Virginia to Texas and from the Ohio River south-
ward, where highway safety is most at risk from
prescribed fire smoke, principally because of the
amount of burning done in the South and the proxim-
ity of wildlands to population centers. Roughly 4
million acres of Southern forests are treated with
prescribed fire each year (after Wade and Lunsford
1988). This area is by far the largest acreage subjected
to prescribed fire in the country. Prescribed fire treat-
ment intervals, especially in Southern pine (in an area
extending roughly from Virginia to Texas), is every 3
to 5 years. These forests are intermixed with homes,
small towns, and scattered villages within an enor-
mous wildland/urban interface. During the daytime,
smoke becomes a problem when it drifts into these
areas of human habitation. At night, smoke can be-
come entrapped near the ground and, in combination
with fog, creates visibility reductions that cause road-
way accidents. The potential exists for frequent and
severe smoke intrusions onto the public roads and
highways from both prescribed and wildland fires.

Magnitude of the Problem

Smoke and smoke/fog obstructions of visibility on
Southeastern United States highways cause numer-
ous accidents with loss of life and personal injuries
every year. Several attempts to compile records of
smoke-implicated highway accidents have been made.
For the 10 years from 1979 through 1988, Mobley
(1989) reported 28 fatalities, over 60 serious injuries,
numerous minor injuries, and millions of dollars in
lawsuits. During 2000, smoke from wildfires drifting
across Interstate 10 caused at least 10 fatalities, five
in Florida and five in Mississippi.

As the population growth in the South continues,
more people will likely be adversely impacted by
smoke on the highways. Unless methods are found to
adequately protect public safety on the highways,
there exists the prospect that increasingly restrictive
regulations will curtail the use of prescribed fire or
that fire as a management tool may be altogether
prohibited.

Figure 8-2—Smoke can cause highway safety problems
when it impedes a driver’s ability to safely see the roadway.
(Photo by Jim Brenner)

Measures to Improve Highway Safety

Several approaches are being taken to reduce the
uncertainty of predicting smoke movement over
roadways:

High-resolution weather prediction models promise
to provide increased accuracy in predictions of wind
speeds and directions and mixing heights at time and
spatial scales useful for land managers. The Florida
Division of Forestry (FDOF) is a leader in the use of
high resolution modeling for forestry applications in
the South (Brenner and others 2001). Because much
of Florida is located within 20 miles of a coastline,
accurate predictions of sea/land breezes and associ-
ated changes in temperature, wind direction, atmo-
spheric stability, and mixing height are critical to the
success of the FDOF. High-resolution modeling con-
sortia are also being established by the USDA Forest
Service to serve clients with interests as diverse as
fire weather, air quality, ecology, and meteorology.
These centers involve scientists in development of
new products and in technology transfer to bring the
products to consortia members.

Several smoke models are in operation or are being
developed to predict smoke movement over Southern
landscapes. VSMOKE (Lavdas 1996), a Gaussian
plume model that assumes level terrain and unchang-
ing winds, predicts smoke movement and concentra-
tion during daytime. VSMOKE has been made part of
the FDOF fire and smoke prediction system. It is a
screening model that aids land managers in assessing
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where smoke might impact sensitive targets as part of
planning for prescribed burns. PB-Piedmont
(Achtemeier 2001) is a wind and smoke model de-
signed to simulate smoke movement near the ground
under entrapment conditions at night. The smoke
plume is simulated as an ensemble of particles that
are transported by local winds over complex terrain
characteristic of the shallow (30 to 50 m) interlocking
ridge/valley systems typical of the Piedmont of the
South. Two sister models are planned — one that will
simulate near-ground smoke movement near coastal
areas influenced by sea/land circulations, and the
other for the Appalachian Mountains.

Climate Change _________________
Globally, fires are a significant contributor of carbon

dioxide and other greenhouse gases in the atmosphere.
Fires are also an important mechanism in the redistri-
bution of ecosystems in response to climate stress,
which in turn affects the atmosphere-biosphere car-
bon balance. Currently, there is no policy mandate,
nor widely accepted methodology for managing fires,
for the conservation of terrestrial carbon pools or
mitigation of greenhouse gas emissions. However, we
may expect carbon accounting and perhaps conserva-
tion to become a part of fire and air resource manage-
ment if and when global agreements are made to
address biomass burning and resultant greenhouse
gas emissions.
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Chapter 9:
Recommendations for Future
Research and Development

Managing smoke and air quality impacts from fires
requires an increasing base of knowledge obtained
through research and the development of information
systems. Fire and air resource managers have had the
responsibility since the 1960s to mitigate direct intru-
sions of smoke into areas where it presents a health or
safety hazard, or where it is simply objectionable to an
affected population. In more recent years, that respon-
sibility has broadened because of an increase in the
use of fire, more people in the wildland/urban inter-
face, tightening of regulatory standards, and decreas-
ing public tolerance for air pollution. More States
require smoke management plans, and the plans are
increasingly complex due to increased coverage and
greater requirements for notification, modeling, moni-
toring, and recordkeeping.

Established Research
Framework _____________________

There is ample strategic analysis and workshop
output to guide research. The most comprehensive
and up-to-date recommendations for research and
development are found in National Strategic Plan:
Modeling and Data Systems for Wildland Fire and Air

Quality (Sandberg and others 1999). Workshop ses-
sions, internal discussion, and review comments were
compiled into more than 200 proposals from which 46
priority projects were selected that support the nine
summary recommendations outlined here.

Recommendation 1: Fuels and fire character-
istics—An ability to estimate emissions from all types
of fires over the wide variation in fuels in the contigu-
ous United States and Alaska is needed. Expanded
models and fuel characteristics data are needed to fill
this gap.

Recommendation 2: Emissions modeling sys-
tems—Current models to estimate emissions are in-
adequate in coverage and incomplete in scope. Emis-
sions production models need to be expanded to include
all fire and fuel types as well as linked to fire behavior
and air quality models in a geographically resolved
data system.

Recommendation 3: Transport, dispersion, and
secondary pollutant formation—Air quality and
land management planners lack spatially explicit plan-
ning and real-time systems for assessing air quality
impacts. A geographic information system (GIS) based
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system linked to emissions production, meteorologi-
cal, and dispersion models is needed.

Recommendation 4: Air quality impact assess-
ment—Better wildland and prescribed fire informa-
tion is needed to compile emissions inventories, for
regional haze analysis and for determination of com-
pliance with National Ambient Air Quality Standards
(NAAQS).

Recommendation 5: Emissions tradeoffs and
determination of “natural” visibility background
assessments—No policy-driven or scientific defini-
tion of “natural” background visibility exists for re-
gional haze assessments. The tradeoffs between wild-
fire and prescribed fire emissions are also not known.
To address these issues, the policy community needs
to decide what types of fires contribute to natural
impairment after which a scientific assessment could
be done and tradeoffs evaluated.

Recommendation 6: Impact and risk assess-
ment of emissions from fire—A comprehensive
assessment of smoke exposure of prescribed and wild-
land firefighters and the public at current levels of fire
activity should be done to provide a baseline for future
risk assessments. Exposures should be periodically
reassessed to evaluate increased risks from future
increases in fire emissions.

Recommendation 7: Monitoring guidelines and
protocols—Guidelines are needed on how best to
monitor source strength, air quality, visibility, and
nuisance impacts from fires to support consistent and
quantitative evaluation of air impacts.

Recommendation 8: National fire and air qual-
ity information database—A readily accessible
source of information on past, current, and predicted
future fire activity levels, emissions production, and
air quality impacts from fires does not exist. Such a
database is needed to analyze past experiences and
replicate successes.

Recommendation 9: Public information and
protection—A centralized system is needed to pro-
vide information to the public on air quality impacts
from fires. Also needed are general criteria for how
land managers, air regulators, and public health offi-
cials should respond to adverse smoke impacts and
emergency notifications of the public to health haz-
ards associated with smoke from fire.

The authors of this plan hoped that these recom-
mendations would be used in future joint agency
efforts to advance the fire sciences, minimize duplica-
tion of effort, and share information among agencies
and the public.

The technically advanced smoke estimation tools, or
TASET, project (Fox and Riebau 2000) was funded by

the Joint Fire Sciences Program (JFSP) to develop a
structured analysis of smoke management and recom-
mend specific developments for advancing the state of
science. The report confirmed and refined the recom-
mendations of Sandberg and others (1999) above, and
developed 10 recommendations for research activities:

• Fire community participation in regional air
quality modeling consortia.

• Conduct a national smoke and visibility con-
ference and reference guide.

• Develop a national smoke emissions data struc-
ture or database system.

• Apply remote sensing for fuels and fire area
emissions inventories.

• Develop a fire gaming system to quantify emis-
sions and impacts from alternative fire man-
agement practices.

• Improve the CalMet/CalPuff smoke manage-
ment model.

• Upgrade a nationalized screening model/
simple approach smoke estimation model
(SASEM).

• Provide onsite fire emissions verification.
• Utilize back-trajectory modeling and filter

analysis for fire smoke contributions for
nonattainment areas.

• Develop a method to identify the specific
sources of organic carbon fine particulate
material.

Research priorities established in the Effects of Fire
Air (Sandberg and others 1979) are unfortunately still
valid today, although some progress has been made in
every category. We list these here, slightly reworded
from the original for brevity and to conform to modern
nomenclature:

1. Provide quantitative smoke management systems.
a. Develop information systems necessary to

support smoke management decisions.
b. Provide a smoke management reporting sys-

tem for emission rates based on the prediction
of fuel consumption, fire behavior, heat re-
lease rates, and source control measures.

c. Provide the data network and modeling scheme
to calculate the change in pollution concentra-
tions and character between the source and
potential receptors.

d. Adapt plume rise models necessary to predict
the vertical distribution of emissions from
fires.

2. Characterize the chemistry and physics of
emissions.
a. Relate emissions and heat release rates to

fuelbed characteristics and fire behavior.



USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 5. 2002 65

b. Advance our knowledge of hazardous and re-
active compounds in smoke.

c. Develop field methods to monitor emission
rates and smoke chemistry from operational
fires.

d. Investigate the potential for secondary reac-
tions of emissions downstream from their
source.

3. Model atmospheric transport, diffusion, trans-
formation, and removal mechanisms.
a. Continue development of winds and disper-

sion models for boundary layer flow and me-
soscale transport of smoke over mountainous
terrain.

b. Investigate the mechanisms of removal; for
example, canopy interactions, fallout, and lo-
cal deposition.

c. Interact with the wider scientific community
to establish the effect of reactive pollutants on
the biosphere.

d. Evaluate the potential contribution of wild-
land fires to climate change.

4. Identify receptor responses to wildland smoke.
a. Identify and quantify the visibility needs of

wildland users, and recommend standards for
particulate and sulfate pollution from all
sources affecting Class I visibility areas.

b. Evaluate the potential impact of wildland
smoke on human health.

c. Investigate the role of wildland ecosystems as a
sink and receptor for atmospheric contaminants.

5. Investigate tradeoffs made in the substitution of
alternatives to fire use.
a. Develop simulation models to evaluate inter-

actions of land use policy with air resource
management. Incorporate air resource man-
agement and fuels management needs into
the land use planning process.

b. Evaluate the effect on wildland fire occurrence
and air pollution from changes in the amount
of prescribed fire activity.

c. Describe the resource and economic tradeoff of
wildland fire occurrence resulting from a
change in prescribed fire activity.

d. Investigate the effect of changes in fire use on
nutrient cycling, successional response, and
ecosystem stability.

Emerging Research Needs________
Several new responsibilities create the need for

additional information systems that require new re-
search and development, including:

• Planning rules that require the consideration
of cumulative pollution and visibility impacts
of fuel management programs.

• Wildland fire situation analysis requirements
that smoke impacts from wildland be antici-
pated and communicated to the public.

• Increased requirements for emission reduction.
• Policies that require hourly and daily tracking

of emissions and the management of smoke
from all fires.

• Increased management of wildland fires for
resource benefits.

• Increased use of long-duration landscape-scale
fires.

• Regulatory concern over secondary pollutants,
especially ozone formation and the reentrain-
ment of mercury.

• Questions about the role of fire and global
biomass emission on atmospheric carbon and
global warming.

• Increased attention to firefighter health ef-
fects from exposure to smoke.

Each of these factors requires information systems
for planning, operations, and monitoring the effects of
fire on air. Using the framework illustrated in figures
1-1 and 1-2 (in chapter 1) and the background of
previous chapters, some emerging research needs are
outlined below.

Emissions Source Strength and
Emissions Inventory

Level of burn activity: Accurately predict, de-
termine, and record the area burned and time of
burning for all types of prescribed and wildland
fire—Area burned is still the parameter that imparts
the greatest error into predictions of source strength
and emission inventory. Needed are: a balanced pro-
gram of new planning models that project area burned
and fire residence times; remote-sensing technologies
that track fire sizes at hourly intervals; ground based
sampling, reporting, and communication systems; and
analysis tools. Planning models include those that
project fire use and predict wildland fire activity from
1 to 50 years in the future must be included, as well as
accurate predictions made a day in advance.

Biomass: Accurately predict, determine, and
record the mass, combustion stage, and resi-
dence time of fuels burned in all types of fires—
Inadequate representation of fuelbed characteristics
and the ability to infer fuelbed characteristics and
flammability conditions from remote sensing or eco-
system physiognomy is the second greatest remaining
source of error. Models of the combustion process,
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while improving, are still inadequate to predict or
characterize emission rates and durations. New clas-
sification systems, inference models, inventory and
sensing processes, and process models are needed.

Heat release and emissions: Predict and mea-
sure physical and chemical characteristics of
emissions from all types of fires—Among the great-
est advances since about 1980 has been the nearly
complete characterization of primary and criteria pol-
lutants from a wide range of fire environments. New
models also greatly improve the prediction and char-
acterization of emissions source strength. Emission
factors for criteria pollutants are adequate. There is
substantial remaining uncertainly in the measure-
ment and prediction of precursors to ozone and other
secondary chemical formations, secondary entrain-
ment of mercury, production and stimulation of nitro-
gen compounds, air toxics, and greenhouse gases.
Continuing research on these trace constituents are
needed. In addition, we lack models that characterize
the complex spatial and temporal distribution of heat
release from fires.

Emissions inventory methods: Integrate mea-
surements and reporting from remote sensing,
airborne platforms, simulation models, and sur-
face observations into a fine-scale spatial and
temporal emission inventory—Emission invento-
ries are a fundamental tool that air resource managers
use to calculate the relative importance of air pollution
sources and to design control strategies. Hourly, point-
specific emission estimates as well as daily, monthly,
and yearly summaries are necessary to compare fire
with other sources or as inputs to dispersion models.
Fire managers currently lack a system of observations
and reporting mechanisms required for planning, track-
ing, and monitoring emissions.

Ambient Air Quality Impacts

Background air quality: Improve the accessi-
bility of girded detail about background air
quality and meteorological conditions—Fire
emissions are inserted into an already complex atmo-
sphere, and current ability to predict pollutant inter-
actions, transformations, and combined effects are
limited by the availability of hourly fine-scale atmo-
spheric profiling.

Plume rise and transport: Improve the pre-
diction, detection, and tracking of plumes from
all types and stages of fires—Fire plumes are
complex; often splitting into lofted and unlofted por-
tions; plumes that split in two directions at different

altitudes, and plumes that change rapidly over time.
Plumes are transported long distances, often over
complex terrain, and the accuracy and availability of
models to predict transport are inadequate. Methods
to track plume trajectories and measure pollutant
concentrations in near real time using remote sensing
are emerging but not yet available.

Dispersion, dilution, and pollutant transfor-
mation: Improve the ability on all scales to pre-
dict, model, and detect changes in the proper-
ties and concentration of pollutants over time
and space—Data and models are needed to initiate
and predict local, regional, national, and global air
quality impacts from individual fires to the cumula-
tive effects of tens of thousands of fires.

Atmospheric carbon balance and climatic
change: Develop consistent technologies to as-
sess the contribution of fires to greenhouse gases
in the atmosphere and the effect of fire and
ecosystem management practices—For a source
of greenhouse gas emissions as large as wildland and
prescribed fires, there is a regrettable lack of consen-
sus on the magnitude or even the methods for assess-
ment and accountability. This emerging issue re-
quires much of the same research on source
characteristics and air quality as do the health, safety,
and visibility issues, but also requires integration
with the global science and policy communities.

Effects on Receptors

Visibility and other welfare effects: Predict,
measure, and interpret the impact of natural
and anthropogenic fire sources on visibility,
economic, and other welfare effects—The impact
of smoke exposure from fires on human health stan-
dards is minor relative to the nuisance it creates and
the impacts on visibility. New science is required to
monitor and predict effects on visibility, and to appor-
tion visibility impacts to specific sources and classes of
sources.

Health and safety risk assessment: Develop
knowledge and systems to assess the risk of
individual and collective fires to personal and
community health and safety—This broad topic
has received limited attention in recent years, mostly
in the prediction of visibility impacts on highway
safety and in the assessment of individual firefighter
exposure to hazardous air pollutants. But all aspects
of risk management, including hazard identification,
exposure assessment, dose-response, risk assessment,
and mitigation measures are lacking.
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Conclusion_____________________
Knowledge and information requirements for man-

aging fire effects on air quality continue to increase.
Policy advancements require the understanding, mod-
eling, prediction, monitoring, and tracking of fires and
their effect on air at greater detail and in greater
volume than ever before. Research and development
has progressed logically over the past 25 years due to
strategic planning and prioritization that has included

the needs of the managers of ecosystems and of air
quality. Analytical and information transfer capacity
has increased dramatically in the past decade, so
information is more readily accessible to those who
need it. Thanks largely to the National Fire Plan, the
Joint Fire Science Program, the Western Regional Air
Partnership, and EPA’s implementation of the Re-
gional Haze Rule, there is currently more active re-
search and development the effects of fire on air than
ever before.
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Southeastern 15, 19, 20, 23, 24, 60
Southern U.S. 60
Southwest 20, 51
Tennessee 25, 41, 46
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Texas 24, 25, 60
Utah 25, 46
Virginia 25, 60
Washington 20, 24, 25, 46, 48, 58
Western Regional Air Partnership

(WRAP) 14, 26, 40, 41, 67
Western U.S. 15, 19
Wyoming 25, 39
Yellowstone National Park 20

Utah. See United States of America: Utah

V

Virginia. See United States of America: Virginia
visibility 2, 4, 6, 7, 10, 13, 14, 15, 19, 20, 24, 25, 26, 35,

39, 41, 45, 49, 50, 58, 59, 60, 64, 65, 66
Class I

areas 10, 12, 14, 15, 24, 25, 47, 49, 50, 58, 59, 65
visibility impairment and reduction 1, 20, 46, 58, 60

VISTAS. See regional planning organizations
VSMOKE. See models

W

Washington. See United States of America: Washington
welfare 2, 4, 6, 9, 11, 16, 35, 45, 55, 58, 66
Western Regional Air Partnership (WRAP) 14, 67
World

Africa
tropical 24

Asia
tropical 24

Canada 20, 25, 42, 49
Russia 25
South America

tropical 25
WRAP. See Western Regional Air Partnership (WRAP)
Wyoming. See United States of America: Wyoming

Y

Yellowstone National Park. See United States of America:
Yellowstone National Park
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The U.S. Department of Agriculture (USDA) prohibits discrimination in all its
programs and activities on the basis of race, color, national origin, sex, religion,
age, disability, political beliefs, sexual orientation, or marital or family status. (Not
all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print,
audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice
and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights,
Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington,
DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal
opportunity provider and employer.

The Rocky Mountain Research Station develops scientific information
and technology to improve management, protection, and use of the
forests and rangelands. Research is designed to meet the needs of
National Forest managers, Federal and State agencies, public and
private organizations, academic institutions, industry, and individuals.

Studies accelerate solutions to problems involving ecosystems,
range, forests, water, recreation, fire, resource inventory, land recla-
mation, community sustainability, forest engineering technology,
multiple use economics, wildlife and fish habitat, and forest insects
and diseases. Studies are conducted cooperatively, and applications
may be found worldwide.

Research Locations

Flagstaff, Arizona Reno, Nevada
Fort Collins, Colorado* Albuquerque, New Mexico
Boise, Idaho Rapid City, South Dakota
Moscow, Idaho Logan, Utah
Bozeman, Montana Ogden, Utah
Missoula, Montana Provo, Utah
Lincoln, Nebraska Laramie, Wyoming

*Station Headquarters, Natural Resources Research Center,
2150 Centre Avenue, Building A, Fort Collins, CO 80526

RMRS
ROCKY MOUNTAIN RESEARCH STATION




